Predicting Food Effects on Oral Extended-Release Drug Products: A Retrospective Evaluation

FDA. FY2015 Regulatory Science Research Report: Modified Release Drug Products: Therapeutic Equivalence between Brand-Name Drugs and Generics. 2015; Available from: https://www.fda.gov/industry/generic-drug-user-fee-amendments/fy2015-regulatory-science-research-report-modified-release-drug-products-therapeutic-equivalence.

EMA. Guideline on the pharmacokinetic and clinical evaluation of modified release dosage forms. 2014; Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-pharmacokinetic-clinical-evaluation-modified-release-dosage-forms_en.pdf.

FDA. Assessing the Effects of Food on Drugs in INDs and NDAs – Clinical Pharmacology Considerations. 2019; Available from: https://www.fda.gov/media/121313/download.

FDA. Guidance for Industry: Food-Effect Bioavailability and Fed Bioequivalence Studies. 2002; Available from: https://www.fda.gov/media/70945/download.

Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7(5):1388–405. https://doi.org/10.1021/mp100149j.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29(8):1035–41. https://doi.org/10.1136/gut.29.8.1035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm. 2008;364(2):213–26. https://doi.org/10.1016/j.ijpharm.2008.05.012.

Article  CAS  PubMed  Google Scholar 

Tannergren C, Bergendal A, Lennernas H, Abrahamsson B. Toward an increased understanding of the barriers to colonic drug absorption in humans: implications for early controlled release candidate assessment. Mol Pharm. 2009;6(1):60–73. https://doi.org/10.1021/mp800261a.

Article  CAS  PubMed  Google Scholar 

Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnurch A, et al. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev. 2021;171:289–331. https://doi.org/10.1016/j.addr.2021.02.001.

Article  CAS  PubMed  Google Scholar 

Pham-The H, Garrigues T, Bermejo M, Gonzalez-Alvarez I, Monteagudo MC, Cabrera-Perez MA. Provisional classification and in silico study of biopharmaceutical system based on caco-2 cell permeability and dose number. Mol Pharm. 2013;10(6):2445–61. https://doi.org/10.1021/mp4000585.

Article  CAS  PubMed  Google Scholar 

Dave RA, Morris ME. Novel high/low solubility classification methods for new molecular entities. Int J Pharm. 2016;511(1):111–26. https://doi.org/10.1016/j.ijpharm.2016.06.060.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahapatra AK, Sameeraja NH, Murthy PN. Development of modified-release tablets of zolpidem tartrate by biphasic quick/slow delivery system. AAPS PharmSciTech. 2015;16(3):579–88. https://doi.org/10.1208/s12249-014-0236-2.

Article  CAS  PubMed  Google Scholar 

Tremblay S, Alloway RR. Clinical Evaluation of Modified Release and Immediate Release Tacrolimus Formulations. AAPS J. 2017;19(5):1332–47. https://doi.org/10.1208/s12248-017-0119-z.

Article  CAS  PubMed  Google Scholar 

Lee J, Zhang W, Moy S, Kowalski D, Kerbusch V, van Gelderen M, et al. Effects of food intake on the pharmacokinetic properties of mirabegron oral controlled-absorption system: a single-dose, randomized, crossover study in healthy adults. Clin Ther. 2013;35(3):333–41. https://doi.org/10.1016/j.clinthera.2013.02.014.

Article  CAS  PubMed  Google Scholar 

Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Risk of Clinically Relevant Pharmacokinetic-Based Drug-Drug Interactions with Drugs Approved by the U.S. Food and Drug Administration Between 2013 and 2016. Drug Metab Dispos. 2018;46(6):835–45. https://doi.org/10.1124/dmd.117.078691.

Skerjanec A. The clinical pharmacokinetics of darifenacin. Clin Pharmacokinet. 2006;45(4):325–50. https://doi.org/10.2165/00003088-200645040-00001.

Article  CAS  PubMed  Google Scholar 

Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther. 1996;60(1):54–61. https://doi.org/10.1016/S0009-9236(96)90167-8.

Article  CAS  PubMed  Google Scholar 

Fritz A, Busch D, Lapczuk J, Ostrowski M, Drozdzik M, Oswald S. Expression of clinically relevant drug-metabolizing enzymes along the human intestine and their correlation to drug transporters and nuclear receptors: An intra-subject analysis. Basic Clin Pharmacol Toxicol. 2019;124(3):245–55. https://doi.org/10.1111/bcpt.13137.

Article  CAS  PubMed  Google Scholar 

Li M, de Graaf IA, de Jager MH, Groothuis GM. P-gp activity and inhibition in the different regions of human intestine ex vivo. Biopharm Drug Dispos. 2017;38(2):127–38. https://doi.org/10.1002/bdd.2047.

Article  CAS  PubMed  Google Scholar 

Connarn JN, Zhang X, Babiskin A, Sun D. Metabolism of bupropion by carbonyl reductases in liver and intestine. Drug Metab Dispos. 2015;43(7):1019–27. https://doi.org/10.1124/dmd.115.063107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hara A, Endo S, Matsunaga T, El-Kabbani O, Miura T, Nishinaka T, et al. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs. Biochem Pharmacol. 2017;138:185–92. https://doi.org/10.1016/j.bcp.2017.04.023.

Article  CAS  PubMed  Google Scholar 

O’Byrne PM, Williams R, Walsh JJ, Gilmer JF. The aqueous stability of bupropion. J Pharm Biomed Anal. 2010;53(3):376–81. https://doi.org/10.1016/j.jpba.2010.04.024.

Article  CAS  PubMed  Google Scholar 

Lai J-P. HORIZANT NDA 22399 Clinical Pharmacology and Biopharmaceutics review. 2011; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022399Orig1s000ClinPharmR.pdf.

Patel NV, Chotai NP, Patel MP. Tablet formulation studies on an oxcarbazepine-beta cyclodextrin binary system. Pharmazie. 2008;63(4):275–81.

CAS  PubMed  Google Scholar 

Dahlgren D, Lennernas H. Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches. Pharmaceutics. 2019;11(8). doi: https://doi.org/10.3390/pharmaceutics11080411.

Fawley J, Gourlay DM. Intestinal alkaline phosphatase: a summary of its role in clinical disease. J Surg Res. 2016;202(1):225–34. https://doi.org/10.1016/j.jss.2015.12.008.

Article  CAS  PubMed  Google Scholar 

Bayer-Pharmaceuticals. Drug label of CIPRO XR. 2003; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2003/21554_ciproXR_lbl.pdf.

Arza RA, Gonugunta CS, Veerareddy PR. Formulation and evaluation of swellable and floating gastroretentive ciprofloxacin hydrochloride tablets. AAPS PharmSciTech. 2009;10(1):220–6. https://doi.org/10.1208/s12249-009-9200-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shanmugam B. PROQUIN XR NDA 21744 Chemistry review. 2005; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021744s000_ChemR.pdf.

Lee KJ, Johnson N, Castelo J, Sinko PJ, Grass G, Holme K, et al. Effect of experimental pH on the in vitro permeability in intact rabbit intestines and Caco-2 monolayer. Eur J Pharm Sci. 2005;25(2–3):193–200. https://doi.org/10.1016/j.ejps.2005.02.012.

Article  CAS  PubMed  Google Scholar 

Lee JB, Zgair A, Taha DA, Zang X, Kagan L, Kim TH, et al. Quantitative analysis of lab-to-lab variability in Caco-2 permeability assays. Eur J Pharm Biopharm. 2017;114:38–42. https://doi.org/10.1016/j.ejpb.2016.12.027.

Article  CAS  PubMed  Google Scholar 

Harwood MD, Zhang M, Pathak SM, Neuhoff S. The Regional-Specific Relative and Absolute Expression of Gut Transporters in Adult Caucasians: A Meta-Analysis. Drug Metab Dispos. 2019;47(8):854–64. https://doi.org/10.1124/dmd.119.086959.

Article  CAS  PubMed  Google Scholar 

Li S, Yu Y, Bian X, Yao L, Li M, Lou YR, et al. Prediction of oral hepatotoxic dose of natural products derived from traditional Chinese medicines based on SVM classifier and PBPK modeling. Arch Toxicol. 2021;95(5):1683–701. https://doi.org/10.1007/s00204-021-03023-1.

Article  CAS  PubMed  Google Scholar 

Li M, Zhao P, Pan Y, Wagner C. Predictive Performance of Physiologically Based Pharmacokinetic Models for the Effect of Food on Oral Drug Absorption: Current Status. CPT: pharmacometrics & systems pharmacology. 2018;7(2):82–9. https://doi.org/10.1002/psp4.12260.

Riedmaier AE, DeMent K, Huckle J, Bransford P, Stillhart C, Lloyd R, et al. Use of Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Drug-Food Interactions: an Industry Perspective. AAPS J. 2020;22(6):123. https://doi.org/10.1208/s12248-020-00508-2.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif