HIV Reservoir: How to Measure It?

UNAIDS. UNAIDS Global AIDS Update 2022. July 27, 2022; Available from: https://www.unaids.org/en/resources/documents/2022/in-danger-global-aids-update.

Wandeler G, Johnson LF, Egger M. Trends in life expectancy of HIV-positive adults on antiretroviral therapy across the globe: comparisons with general population. Curr Opin HIV AIDS. 2016;11(5):492–500.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palella FJ Jr, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection HIV Outpatient Study Investigators. N Engl J Med. 1998;338(13):853–60.

Article  PubMed  Google Scholar 

Palmer S, et al. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A. 2008;105(10):3879–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chun TW, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997;94(24):13193–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finzi D, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–300.

Article  CAS  PubMed  Google Scholar 

Davey RT Jr, et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A. 1999;96(26):15109–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wan C, et al. Heritability of the HIV-1 reservoir size and decay under long-term suppressive ART. Nat Commun. 2020;11(1):5542.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antar AA, et al. Longitudinal study reveals HIV-1-infected CD4+ T cell dynamics during long-term antiretroviral therapy. J Clin Invest. 2020;130(7):3543–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruner KM, Hosmane NN, Siliciano RF. Towards an HIV-1 cure: measuring the latent reservoir. Trends Microbiol. 2015;23(4):192–203.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delagreverie HM, et al. Ongoing clinical trials of human immunodeficiency virus latency-reversing and immunomodulatory agents. Open Forum Infect Dis. 2016;3(4):189.

Article  Google Scholar 

Chun TW, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387(6629):183–8.

Article  CAS  PubMed  Google Scholar 

Finzi D, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5(5):512–7.

Article  CAS  PubMed  Google Scholar 

Chun TW, et al. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med. 1995;1(12):1284–90.

Article  CAS  PubMed  Google Scholar 

Laird GM, et al. Measuring the frequency of latent HIV-1 in resting CD4(+) T cells using a limiting dilution coculture assay. Methods Mol Biol. 2016;1354:239–53.

Article  CAS  PubMed  Google Scholar 

Pinzone MR, O’Doherty U. Measuring integrated HIV DNA ex vivo and in vitro provides insights about how reservoirs are formed and maintained. Retrovirology. 2018;15(1):22.

Article  PubMed  PubMed Central  Google Scholar 

Laird GM, et al. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLoS Pathog. 2013;9(5):e1003398.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salantes DB, et al. HIV-1 latent reservoir size and diversity are stable following brief treatment interruption. J Clin Invest. 2018;128(7):3102–15.

Article  PubMed  PubMed Central  Google Scholar 

Stuelke EL, et al. Measuring the inducible, replication-competent HIV reservoir using an ultra-sensitive p24 readout, the digital ELISA viral outgrowth assay. Front Immunol. 2020;11:1971.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren, Y., et al. 2018 Susceptibility to neutralization by broadly neutralizing antibodies generally correlates with infected cell binding for a panel of clade B HIV reactivated from latent reservoirs. J Virol 92(23)

Massanella M, et al. Improved assays to measure and characterize the inducible HIV reservoir. EBioMedicine. 2018;36:113–21.

Article  PubMed  PubMed Central  Google Scholar 

Rosenbloom DI, et al. Designing and interpreting limiting dilution assays: general principles and applications to the latent reservoir for human immunodeficiency virus-1. Open Forum Infect Dis. 2015;2(4):123.

Article  Google Scholar 

Ho YC, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155(3):540–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Metcalf Pate KA, et al. A murine viral outgrowth assay to detect residual HIV type 1 in patients with undetectable viral loads. J Infect Dis. 2015;212(9):1387–96.

Article  PubMed  PubMed Central  Google Scholar 

Yuan Z, et al. Reactivation of HIV-1 proviruses in immune-compromised mice engrafted with human VOA-negative CD4+ T cells. J Virus Erad. 2017;3(1):61–5.

Article  PubMed  PubMed Central  Google Scholar 

Henrich TJ, et al. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: an observational study. PLoS Med. 2017;14(11): e1002417.

Article  PubMed  PubMed Central  Google Scholar 

Palmer S, et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol. 2003;41(10):4531–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denton PW, Garcia JV. Humanized mouse models of HIV infection. AIDS Rev. 2011;13(3):135–48.

PubMed  PubMed Central  Google Scholar 

Deruaz M, Tager AM. Humanized mouse models of latent HIV infection. Curr Opin Virol. 2017;25:97–104.

Article  CAS  PubMed  Google Scholar 

Berges BK, Rowan MR. The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology. 2011;8:65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology. 2013;435(1):14–28.

Article  CAS  PubMed  Google Scholar 

Lan P, et al. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487–92.

Article  CAS  PubMed  Google Scholar 

Wege AK, et al. Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol. 2008;324:149–65.

CAS  PubMed  Google Scholar 

Charlins P, et al. A humanized mouse-based HIV-1 viral outgrowth assay with higher sensitivity than in vitro qVOA in detecting latently infected cells from individuals on ART with undetectable viral loads. Virology. 2017;507:135–9.

Article  CAS  PubMed  Google Scholar 

Schmitt K, Akkina R. Ultra-sensitive HIV-1 latency viral outgrowth assays using humanized mice. Front Immunol. 2018;9:344.

Article  PubMed  PubMed Central  Google Scholar 

Dufour C, et al. The multifaceted nature of HIV latency. J Clin Invest. 2020;130(7):3381–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yukl, S.A., et al., HIV latency in isolated patient CD4(+) T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci Transl Med, 2018. 10(430).

Neumann M, et al. Splicing variability in HIV type 1 revealed by quantitative RNA polymerase chain reaction. AIDS Res Hum Retroviruses. 1994;10(11):1531–42.

Article  CAS  PubMed  Google Scholar 

Purcell DF, Martin MA. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993;67(11):6365–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif