H3K27me3-H3K4me1 transition at bivalent promoters instructs lineage specification in development

Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.

Article  CAS  PubMed  Google Scholar 

Blanco E, González-Ramírez M, Alcaine-Colet A, Aranda S, Di Croce L. The bivalent genome: characterization, structure, and regulation. TIG. 2020;36(2):118–31.

Article  CAS  PubMed  Google Scholar 

Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W, Zhao K. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell. 2009;4(1):80–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan L, Guo H, Hu B, Li R, Yong J, Zhao Y, Zhi X, Fan X, Guo F, Wang X, et al. Epigenomic landscape of human fetal brain, heart, and liver. J Biol Chem. 2016;291(9):4386–98.

Article  CAS  PubMed  Google Scholar 

Lesch BJ, Page DC. Poised chromatin in the mammalian germ line. Development (Cambridge, England). 2014;141(19):3619–26.

Article  CAS  PubMed  Google Scholar 

Vastenhouw NL, Schier AF. Bivalent histone modifications in early embryogenesis. Curr Opin Cell Biol. 2012;24(3):374–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voigt P, Tee WW, Reinberg D. A double take on bivalent promoters. Genes Dev. 2013;27(12):1318–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harikumar A, Meshorer E. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep. 2015;16(12):1609–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li F, Wan M, Zhang B, Peng Y, Zhou Y, Pi C, Xu X, Ye L, Zhou X, Zheng L. Bivalent histone modifications and development. Curr Stem Cell Res Ther. 2018;13(2):83–90.

Article  PubMed  Google Scholar 

Piunti A, Shilatifard A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol. 2021;22(5):326–45.

Article  CAS  PubMed  Google Scholar 

Rao RC, Dou Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer. 2015;15(6):334–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cenik BK, Shilatifard A. COMPASS and SWI/SNF complexes in development and disease. Nat Rev Genet. 2021;22(1):38–58.

Article  CAS  PubMed  Google Scholar 

Piunti A, Shilatifard A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science. 2016;352(6290):aad9780.

Article  PubMed  Google Scholar 

Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 2019;20(10):625–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

Article  CAS  PubMed  Google Scholar 

Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R, Lichter P. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet. 2013;14(11):765–80.

Article  CAS  PubMed  Google Scholar 

Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends in genetics : TIG. 2021;37(11):1012–27.

Article  CAS  PubMed  Google Scholar 

Rodriguez J, Muñoz M, Vives L, Frangou CG, Groudine M, Peinado MA. Bivalent domains enforce transcriptional memory of DNA methylated genes in cancer cells. Proc Natl Acad Sci U S A. 2008;105(50):19809–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, et al. Epigenetic stem cell signature in cancer. Nat Genet. 2007;39(2):157–8.

Article  CAS  PubMed  Google Scholar 

Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q, Aryee MJ, Joyce P, Ahuja N, Weisenberger D, et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res. 2012;22(5):837–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernhart SH, Kretzmer H, Holdt LM, Jühling F, Ammerpohl O, Bergmann AK, Northoff BH, Doose G, Siebert R, Stadler PF, et al. Changes of bivalent chromatin coincide with increased expression of developmental genes in cancer. Sci Rep. 2016;6:37393.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39(2):237–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whyte WA, Bilodeau S, Orlando DA, Hoke HA, Frampton GM, Foster CT, Cowley SM, Young RA. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature. 2012;482(7384):221–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

AlAbdi L, Saha D, He M, Dar MS, Utturkar SM, Sudyanti PA, McCune S, Spears BH, Breedlove JA, Lanman NA, et al. Oct4-Mediated inhibition of Lsd1 activity promotes the active and primed state of pluripotency enhancers. Cell Rep. 2020;30(5):1478-1490.e1476.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinckier NK, Patel NA, Geusz RJ. LSD1-mediated enhancer silencing attenuates retinoic acid signalling during pancreatic endocrine cell development. Nat Commun. 2020;11(1):2082.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.

Article  CAS  PubMed  Google Scholar 

Cheng J, Blum R, Bowman C, Hu D, Shilatifard A, Shen S, Dynlacht BD. A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers. Mol Cell. 2014;53(6):979–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bae S, Lesch BJ. H3K4me1 distribution predicts transcription state and poising at promoters. Front Cell Dev Biol. 2020;8:289.

Article  PubMed  PubMed Central  Google Scholar 

Skvortsova K, Masle-Farquhar E, Luu PL, Song JZ, Qu W, Zotenko E, Gould CM, Du Q, Peters TJ, Colino-Sanguino Y, et al. DNA hypermethylation encroachment at CpG Island borders in cancer is predisposed by H3K4 monomethylation patterns. Cancer Cell. 2019;35(2):297-314.e298.

Article  CAS  PubMed  Google Scholar 

Dozmorov MG. Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes. Epigenetics. 2015;10(6):484–95.

Article  PubMed  PubMed Central  Google Scholar 

Brunmeir R, Wu J, Peng X, Kim SY, Julien SG, Zhang Q, Xie W, Xu F. Comparative transcriptomic and epigenomic analyses reveal new regulators of murine brown adipogenesis. PLoS Genet. 2016;12(12): e1006474.

Article  PubMed  PubMed Central  Google Scholar 

Syrjänen JL, Pellegrini L, Davies OR. A molecular model for the role of SYCP3 in meiotic chromosome organisation. Elife. 2014. https://doi.org/10.7554/eLife.02963.

Article  PubMed  PubMed Central  Google Scholar 

Sirover MA. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Acta. 1999;1432(2):159–84.

CAS  PubMed  Google Scholar 

Smith J, Zyoud A. A c

留言 (0)

沒有登入
gif