Asymmetric reactions involving aryne intermediates

Hoffmann, R. W. Dehydrobenzene and Cycloalkynes (Academic Press, 1967).

Yoshida, H. in Multicomponent Reactions in Organic Synthesis (eds. Zhu, J., Wang, Q., & Wang, M.-X.) 39–72 (Wiley-VCH, 2015).

Kumamoto, T. & Katakawa, K. in Cycloaddition Reactions: Advances in Research and Applications (ed. Margetić, D.) Ch. 1 (Nova, 2019).

Stoermer, R. & Kahlert, B. Ueber das 1- und 2-Brom-type 1cumaron. Ber. Dtsch. Chem. Ges. 35, 1633–1640 (1902). 

Article  CAS  Google Scholar 

Bachmann, W. E. & Clarke, H. T. The mechanism of the Wurtz–Fittig reaction. J. Am. Chem. Soc. 49, 2089–2098 (1927). 

Article  CAS  Google Scholar 

Wittig, G. Phenyl-Lithium, der Schlüssel zu einer neuen Chemie Metallorganischer Verbindungen. Naturwissenschaften 30, 696–703 (1942). 

Article  CAS  Google Scholar 

Roberts, J. D., Simmons, H. E. Jr, Carlsmith, L. A. & Vaughan, C. W. Rearrangement in the reaction of chlorobenzene-1-C14 with potassium amide. J. Am. Chem. Soc. 75, 3290–3291 (1953).

Article  CAS  Google Scholar 

Himeshima, Y., Sonoda, T. & Kobayashi, H. Fluoride-induced 1,2-elimination of o-trimethylsilylphenyl triflate to benzyne under mild conditions. Chem. Lett. 12, 1211–1214 (1983).

Article  Google Scholar 

Sanz, R. Recent applications of aryne chemistry to organic synthesis. A review. Org. Prep. Proced. Int. 40, 215–291 (2008).

Article  CAS  Google Scholar 

García-López, J.-A. & Greaney, M. F. Synthesis of biaryls using aryne intermediates. Chem. Soc. Rev. 45, 6766–6798 (2016).

Article  PubMed  Google Scholar 

Buchwald, S. L. & Nielsen, R. B. Group 4 metal complexes of benzynes, cycloalkynes, acyclic alkynes, and alkenes. Chem. Rev. 88, 1047–1058 (1988).

Article  CAS  Google Scholar 

Bennett, M. A. & Schwemlein, H. P. Metal complexes of small cycloalkynes and arynes. Angew. Chem. Int. Ed. Engl. 28, 1296–1320 (1989).

Article  Google Scholar 

Bennett, M. A. & Wenger, E. The reactivity of complexes of nickel(0) and platinum(0) containing benzyne and related small-ring alkynes. Chem. Ber. 130, 1029–1042 (1997).

Article  CAS  Google Scholar 

Barluenga, J., Rodríguez, F., Álvarez-Rodrigo, L. & Fañanás, F. J. Coupling reactions of zirconocene complexes and heterosubstituted alkenes. Chem. Soc. Rev. 34, 762–768 (2005).

Article  CAS  PubMed  Google Scholar 

Dyke, A. M., Hester, A. J. & Lloyd-Jones, G. C. Organometallic generation and capture of ortho-arynes. Synthesis 2006, 4093–4112 (2006).

Article  Google Scholar 

Bennett, M. A. Aryne complexes of zerovalent metals of the nickel triad. Aust. J. Chem. 63, 1066–1075 (2010).

Article  CAS  Google Scholar 

Shi, J., Li, L. & Li, Y. o-Silylaryl triflates: a journey of kobayashi aryne precursors. Chem. Rev. 121, 3892–4044 (2021).

Article  CAS  PubMed  Google Scholar 

Peña, D., Escudero, S., Pérez, D., Guitián, E. & Castedo, L. Efficient palladium-catalyzed cyclotrimerization of arynes: synthesis of triphenylenes. Angew. Chem. Int. Ed. 37, 2659–2661 (1998).

Article  Google Scholar 

Caeiro, J., Peña, D., Cobas, A., Pérez, D. & Guitián, E. Asymmetric catalysis in the [2+2+2] cycloaddition of arynes and alkynes: enantioselective synthesis of a pentahelicene. Adv. Synth. Catal. 348, 2466–2474 (2006). The first paper to show the potential of catalytic asymmetric synthesis using arynes.

Article  CAS  Google Scholar 

Yubuta, A. et al. Enantioselective synthesis of triple helicenes by cross-cyclotrimerization of a helicenyl aryne and alkynes via dynamic kinetic resolution. J. Am. Chem. Soc. 142, 10025–10033 (2020). The first paper to achieve high enantioselectivities in excess of 90% ee in catalytic asymmetric synthesis using arynes.

Article  CAS  PubMed  Google Scholar 

Pierrot, D. & Marek, I. Synthesis of enantioenriched vicinal tertiary and quaternary carbon stereogenic centers within an acyclic chain. Angew. Chem. Int. Ed. 59, 36–49 (2020).

Article  CAS  Google Scholar 

Zhou, F. et al. Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chem. Sci. 11, 9341–9365 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ping, Y., Li, Y., Zhu, J. & Kong, W. Construction of quaternary stereocenters by palladium-catalyzed carbopalladation-initiated cascade reactions. Angew. Chem. Int. Ed. 58, 1562–1573 (2019).

Article  CAS  Google Scholar 

Li, Y. & Xu, S. Transition-metal-catalyzed C−H functionalization for construction of quaternary carbon center. Chemistry 24, 16218–16245 (2018).

Article  CAS  PubMed  Google Scholar 

Feng, J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters via enantioselective transition metal catalysis. Chem. Rev. 117, 12564–12580 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eitzinger, A., Winter, M., Schörgenhumer, J. & Waser, M. Quaternary β2,2-amino acid derivatives by asymmetric addition of isoxazolidin-5-ones to para-quinone methides. Chem. Commun. 56, 579–582 (2020).

Article  CAS  Google Scholar 

Harada, K. et al. Asymmetric construction of vicinal stereocenters containing quaternary and tertiary carbons: application to the formal synthesis of (–)-chenopodene. Eur. J. Org. Chem. 2020, 420–423 (2020).

Article  CAS  Google Scholar 

Qiu, J. et al. Construction of all-carbon chiral quaternary centers through CuI-catalyzed enantioselective reductive hydroxymethylation of 1,1-disubstituted allenes with CO2. Chem. Eur. J. 25, 13874–13878 (2019).

Article  CAS  PubMed  Google Scholar 

Bratt, E., Suárez-Pantiga, S., Johansson, M. J. & Mendoza, A. Mechanism and regioselectivity of the anionic oxidative rearrangement of 1,3-diketones towards all-carbon quaternary carboxylates. Chem. Commun. 55, 8844–8847 (2019).

Article  CAS  Google Scholar 

Zhang, Q.-Q. et al. Regio- and stereoselective alkenylation of allenoates with gem-difluoroalkenes: facile access to fluorinated 1,4-enynes bearing an all-carbon quaternary center. Org. Lett. 21, 3123–3126 (2019).

Article  CAS  PubMed  Google Scholar 

Fujita, T. et al. Chemo- and enantioselective Pd/B hybrid catalysis for the construction of acyclic quaternary carbons: migratory allylation of O-allyl esters to α-C-allyl carboxylic acids. J. Am. Chem. Soc. 140, 5899–5903 (2018).

Article  CAS  PubMed  Google Scholar 

Yu, K. et al. Lithium enolates in the enantioselective construction of tetrasubstituted carbon centers with chiral lithium amides as noncovalent stereodirecting auxiliaries. J. Am. Chem. Soc. 139, 527–533 (2017).

Article  CAS  PubMed  Google Scholar 

Anthony, S. M., Wonilowicz, L. G., McVeigh, M. S. & Garg, N. K. Leveraging fleeting strained intermediates to access complex scaffolds. JACS Au 1, 897–912 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fluegel, L. L. & Hoye, T. R. Hexadehydro-Diels–Alder reaction: benzyne generation via cycloisomerization of tethered triynes. Chem. Rev. 121, 2413–2444 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsuzawa, T., Yoshida, S. & Hosoya, T. Recent advances in reactions between arynes and organosulfur compounds. Tetrahedron Lett. 59, 4197–4208 (2018).

Article  CAS  Google Scholar 

Takikawa, H., Nishii, A., Sakai, T. & Suzuki, K. Aryne-based strategy in the total synthesis of naturally occurring polycyclic compounds. Chem. Soc. Rev. 47, 8030–8056 (2018).

Article  CAS  PubMed  Google Scholar 

Roy, T. & Biju, A. T. Recent advances in molecular rearrangements involving aryne intermediates. Chem. Commun. 54, 2580–2594 (2018).

Article  CAS  Google Scholar 

Shi, J., Li, Y. & Li, Y. Aryne multifunctionalization with benzdiyne and benztriyne equivalents. Chem. Soc. Rev. 46, 1707–1719 (2017).

Article  CAS  PubMed  Google Scholar 

Idiris, F. I. M. & Jones, C. R. Recent advances in fluoride-free aryne generation from arene precursors. Org. Biomol. Chem. 15, 9044–9056 (2017).

Article  CAS  PubMed  Google Scholar 

Bhojgude, S. S., Bhunia, A. & Biju, A. T. Employing arynes in Diels–Alder reactions and transition-metal-free multicomponent coupling and arylation reactions. Acc. Chem. Res. 49, 1658–1670 (2016).

Article  CAS  PubMed  Google Scholar 

Goetz, A. E., Shah, T. K. & Garg, N. K. Pyridynes and indolynes as building blocks for functionalized heterocycles and natural products. Chem. Commun. 51, 34–45 (2015).

Article  CAS  Google Scholar 

Dubrovskiy, A. V., Markina, N. A. & Larock, R. C. Use of benzynes for the synthesis of heterocycles. Org. Biomol. Chem. 11, 191–218 (2013).

Article  CAS  PubMed  Google Scholar 

Tadross, P. M. & Stoltz, B. M. A comprehensive history of arynes in natural product total synthesis. Chem. Rev. 112, 3550–3577 (2012).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif