Effect of topical motesanib in experimental corneal neovascularization model

Zhang SX, Ma JX (2007) Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res 26:1–37

Article  PubMed  Google Scholar 

Feizi S, Azari AA, Safapour S (2017) Therapeutic approaches for corneal neovascularization. Eye and Vision 4:1–10

Article  Google Scholar 

Philipp W, Speicher L, Humpel C (2000) Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Investig Ophthalmol Visual Sci 41:2514–2522

CAS  Google Scholar 

Ho QT, Kuo CJ (2007) Vascular endothelial growth factor: biology and therapeutic applications. Int J Biochem Cell Biol 39:1349–1357

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gan L, Fagerholm P, Palmblad J (2004) Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in the regulation of corneal neovascularization and wound healing. Acta Ophthalmol Scand 82:557–563

Article  CAS  PubMed  Google Scholar 

Scholl S, Kirchhof J, Augustin AJ (2010) Antivascular endothelial growth factors in anterior segment diseases. Anti-VEGF. Karger Publishers, vol 46, pp 133–139

Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

Article  CAS  PubMed  Google Scholar 

Zhang Y, Cai S, Jia Y, Qi C, Sun J, Zhang H et al (2017) Decoding noncoding RNAs: role of microRNAs and long noncoding RNAs in ocular neovascularization. Theranostics 7:3155–3167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrigues EB, Farah ME, Maia M, Penha FM, Regatieri C, Melo GB et al (2009) Therapeutic monoclonal antibodies in ophthalmology. Prog Retin Eye Res 28(2):117–144

Article  CAS  PubMed  Google Scholar 

Montanino A, Manzo A, Carillio G, Palumbo G, Esposito G et al (2021) Angiogenesis inhibitors in small cell lung cancer. Front Oncol 11:655316

Article  PubMed  PubMed Central  Google Scholar 

Li C, Kuchimanchi M, Hickman D, Poppe L, Hayashi M, Zhou Y et al (2009) In vitro metabolism of the novel, highly selective oral angiogenesis inhibitor motesanib diphosphate in preclinical species and in humans. Drug Metab Dispos 37:1378–1394

Article  CAS  PubMed  Google Scholar 

Sawaki A, Yamada Y, Komatsu Y, Kanda T, Koseki M, Baba H et al (2010) Phase II study of motesanib in Japanese patients with advanced gastrointestinal stromal tumors with prior exposure to imatinib mesylate. Cancer Chemother Pharmacol 65:961–967

Article  CAS  PubMed  Google Scholar 

Sherman SI, Wirth LJ, Droz J-P, Hofmann M, Bastholt L, Martins RG et al (2008) Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 359:31–42

Article  CAS  PubMed  Google Scholar 

Tektemur A, Etem Önalan E, Kaya Tektemur N, Dayan Cinkara S, Kılınçlı Çetin A, Tekedereli et al (2021) Carbamazepine-induced sperm disorders can be associated with the altered expressions of testicular KCNJ11/miR-let-7a and spermatozoal CFTR/miR-27a. Andrologia 53:e13954

Article  CAS  PubMed  Google Scholar 

Prasadam I, Zhou Y, Du Z, Chen J, Crawford R, Xiao Y (2014) Osteocyte-induced angiogenesis via VEGF–MAPK-dependent pathways in endothelial cells. Mol Cell Biochem 386:15–25

Article  CAS  PubMed  Google Scholar 

Kamanu TK, Radovanovic A, Archer JA, Bajic VB (2013) Exploration of miRNA families for hypotheses generation. Sci Rep 3:1–8

Article  Google Scholar 

Mukwaya A, Jensen L, Peebo B, Lagali N (2019) MicroRNAs in the cornea: role and implications for treatment of corneal neovascularization. Ocular Surface 17:400–411

Article  PubMed  Google Scholar 

Wang L, Lee AYW, Wigg JP, Peshavariya H, Liu P, Zhang H (2016) miR-126 regulation of angiogenesis in age-related macular degeneration in CNV mouse model. Int J Mol Sci 17:895

Article  PubMed  PubMed Central  Google Scholar 

Bai Y, Bai X, Wang Z, Zhang X, Ruan C, Miao J, (2011) MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Pathol 91:471–477

Article  CAS  PubMed  Google Scholar 

Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ et al (2008) Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 135:3989–39893

Article  CAS  PubMed  Google Scholar 

Yaşar M, Çakmak H, Dündar S, Örenay Boyacıoğlu S, Çalışkan M, Ergin K (2020) The role of microRNAs in corneal neovascularization and its relation to VEGF. Cutan Ocul Toxicol 39(4):341–347

Article  PubMed  Google Scholar 

Liu C-H, Huang S, Britton WR, Chen J (2020) MicroRNAs in vascular eye Diseases. Int J Mol Sci 21:649

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Zhang T, Ma X, Zou J (2017) Subconjunctival injection of antagomir-21 alleviates corneal neovascularization in a mouse model of alkali-burned cornea. Oncotarget 8:11797–11808

Article  PubMed  Google Scholar 

Urbich C, Kaluza D, Frömel T, Knau A, Bennewitz K, Boon RA et al (2012) MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood J Am Soc Hematol 119:1607–1616

CAS  Google Scholar 

Chen P, Yin H, Wang Y, Wang Y, Xie L (2012) Inhibition of VEGF expression and corneal neovascularization by shRNA targeting HIF-1α in a mouse model of closed eye contact lens wear. Mol Vis 18:864–873

CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Di G, Dong M, Qu M, Zhao X, Duan H et al (2018) Epithelium-derived miR-204 inhibits corneal neovascularization. Exp Eye Res 167:122–127

Article  CAS  PubMed  Google Scholar 

Zong R, Zhou T, Lin Z, Bao X, Xiu Y, Chen Y et al (2016) Down-regulation of MicroRNA-184 is associated with corneal neovascularization. Invest Ophthalmol Vis Sci 57(3):1398–1407

Article  CAS  PubMed  Google Scholar 

Al-Debasi T, Al-Bekairy A, Al-Katheri A, Al Harbi S, Mansour M (2017) Topical versus subconjunctival anti-vascular endothelial growth factor therapy (Bevacizumab, Ranibizumab and Aflibercept) for treatment of corneal neovascularization. Saudi J Ophthalmol 31:99–105

Article  PubMed  PubMed Central  Google Scholar 

Habot-Wilner Z, Barequet IS, MoisseievJ, Rossner M IY (2010) The inhibitory effect of different concentrations of topical bevacizumab on corneal neovascularization. Acta Ophthalmol 88:862–867

Article  CAS  PubMed  Google Scholar 

Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39

Article  PubMed  Google Scholar 

Pawson T (2002) Regulation and targets of receptor tyrosine kinases. Eur J Cancer 38:3–10

Article  Google Scholar 

Yildirim H, Aydemir O, Balbaba M, Özercan IH, Ilhan N (2020) Comparison of the effect of topical bevacizumab and sorafenib in experimental corneal neovascularization. Cutan Ocul Toxicol 39:223–228

Article  CAS  PubMed  Google Scholar 

Sahan B, Ciftci F, Eyuboglu S, Yilmaz B, Yalvac BI (2019) Comparison of the effects of dovitinib and bevacizumab on reducing neovascularization in an experimental rat corneal neovascularization model. Cornea 38:1161–1168

Article  PubMed  Google Scholar 

Cakmak H, Gokmen E, Bozkurt G, Kocaturk T, Ergin K (2018) Effects of sunitinib and bevacizumab on VEGF and miRNA levels on corneal neovascularization. Cutan Ocul Toxicol 37(2):191–195

Article  PubMed  Google Scholar 

Rho CR, Kang S, Park KC, Yang KJ, Choi H, Cho WK (2015) Antiangiogenic effects of topically administered multiple kinase inhibitor, motesanib (AMG 706), on experimental choroidal neovascularization in mice. J Ocul Pharmacol Ther 31:25–31

Article  CAS  PubMed  PubMed Central  Google Scholar 

Polverino A, Coxon A, Starnes C, Diaz Z, DeMelfi T, Wang L et al (2006) AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Can Res 66:8715–8721

Article  CAS  Google Scholar 

Coxon A, Bready J, Kaufman S, Estrada J, Osgood T, Canon J (2012) Anti-tumor activity of motesanib in a medullary thyroid cancer model. J Endocrinol Invest 35:181–190

CAS  PubMed  Google Scholar 

Coxon A, Bush T, Saffran D, Kaufman S, Belmontes B, Rex K et al (2009) Broad antitumor activity in breast cancer xenografts by motesanib, a highly selective, oral inhibitor of vascular endothelial growth factor, platelet-derived growth factor, and Kit receptors. Clin Cancer Res 15:110–118

Article  CAS  PubMed  Google Scholar 

Tebbutt N, Kotasek D, Burris HA, Schwartzberg LS, Hurwitz H, Golstein SJ, D, (2015) Motesanib with or without panitumumab plus FOLFIRI or FOLFOX for the treatment of metastatic colorectal cancer. Cancer Chemother Pharmacol 75:993–1004

Article  CAS 

留言 (0)

沒有登入
gif