Mechanisms underlying spindle assembly and robustness

Flemming, W. Zellsubstanz, kern und zelltheilung (Vogel, 1882).

Santaguida, S. & Amon, A. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol. 16, 473–485 (2015).

Article  CAS  PubMed  Google Scholar 

Potapova, T. & Gorbsky, G. J. The consequences of chromosome segregation errors in mitosis and meiosis. Biology https://doi.org/10.3390/biology6010012 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Thawani, A. & Petry, S. Molecular insight into how gamma-TuRC makes microtubules. J. Cell Sci. https://doi.org/10.1242/jcs.245464 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Voter, W. A. & Erickson, H. P. The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism. J. Biol. Chem. 259, 10430–10438 (1984).

Article  CAS  PubMed  Google Scholar 

Zupa, E., Liu, P., Wurtz, M., Schiebel, E. & Pfeffer, S. The structure of the gamma-TuRC: a 25-years-old molecular puzzle. Curr. Opin. Struct. Biol. 66, 15–21 (2021).

Article  CAS  PubMed  Google Scholar 

Liu, P. et al. Insights into the assembly and activation of the microtubule nucleator gamma-TuRC. Nature 578, 467–471 (2020).

Article  CAS  PubMed  Google Scholar 

Wieczorek, M. et al. Asymmetric molecular architecture of the human gamma-tubulin ring complex. Cell 180, 165–175.e16 (2020).

Article  CAS  PubMed  Google Scholar 

Consolati, T. et al. Microtubule nucleation properties of single human gammaTuRCs explained by their Cryo-EM structure. Dev. Cell 53, 603–617.e8 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thawani, A. et al. The transition state and regulation of gamma-TuRC-mediated microtubule nucleation revealed by single molecule microscopy. eLife https://doi.org/10.7554/eLife.54253 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Thawani, A., Kadzik, R. S. & Petry, S. XMAP215 is a microtubule nucleation factor that functions synergistically with the gamma-tubulin ring complex. Nat. Cell Biol. 20, 575–585 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flor-Parra, I., Iglesias-Romero, A. B. & Chang, F. The XMAP215 ortholog Alp14 promotes microtubule nucleation in fission yeast. Curr. Biol. 28, 1681–1691.e4 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

King, B. R. et al. XMAP215 and gamma-tubulin additively promote microtubule nucleation in purified solutions. Mol. Biol. Cell 31, 2187–2194 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gunzelmann, J. et al. The microtubule polymerase Stu2 promotes oligomerization of the gamma-TuSC for cytoplasmic microtubule nucleation. eLife https://doi.org/10.7554/eLife.39932 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Tsuchiya, K. et al. Ran-GTP is non-essential to activate NuMA for mitotic spindle-pole focusing but dynamically polarizes HURP near chromosomes. Curr. Biol. 31, 115–127.e3 (2021).

Article  CAS  PubMed  Google Scholar 

Sampaio, P., Rebollo, E., Varmark, H., Sunkel, C. E. & Gonzalez, C. Organized microtubule arrays in gamma-tubulin-depleted Drosophila spermatocytes. Curr. Biol. 11, 1788–1793 (2001).

Article  CAS  PubMed  Google Scholar 

Brunet, S. et al. Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts. Mol. Biol. Cell 15, 5318–5328 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imasaki, T. et al. CAMSAP2 organizes a gamma-tubulin-independent microtubule nucleation centre through phase separation. eLife https://doi.org/10.7554/eLife.77365 (2022).

Article  PubMed  PubMed Central  Google Scholar 

McKinley, K. L. & Cheeseman, I. M. Large-scale analysis of CRISPR/Cas9 cell-cycle knockouts reveals the diversity of p53-dependent responses to cell-cycle defects. Dev. Cell 40, 405–420.e2 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gudimchuk, N. B. & McIntosh, J. R. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat. Rev. Mol. Cell Biol. 22, 777–795 (2021).

Article  CAS  PubMed  Google Scholar 

Choi, Y. K., Liu, P., Sze, S. K., Dai, C. & Qi, R. Z. CDK5RAP2 stimulates microtubule nucleation by the gamma-tubulin ring complex. J. Cell Biol. 191, 1089–1095 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, P., Choi, Y. K. & Qi, R. Z. NME7 is a functional component of the gamma-tubulin ring complex. Mol. Biol. Cell 25, 2017–2025 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Cota, R. R. et al. MZT1 regulates microtubule nucleation by linking gammaTuRC assembly to adapter-mediated targeting and activation. J. Cell Sci. 130, 406–419 (2017).

CAS  PubMed  Google Scholar 

Kollman, J. M. et al. Ring closure activates yeast gammaTuRC for species-specific microtubule nucleation. Nat. Struct. Mol. Biol. 22, 132–137 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077.e10 (2017).

Article  CAS  PubMed  Google Scholar 

Baumgart, J. et al. Soluble tubulin is significantly enriched at mitotic centrosomes. J. Cell Biol. 218, 3977–3985 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

King, M. R. & Petry, S. Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation. Nat. Commun. 11, 270 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haren, L., Stearns, T. & Luders, J. Plk1-dependent recruitment of gamma-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS ONE 4, e5976 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Lee, K. & Rhee, K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 195, 1093–1101 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haren, L. et al. NEDD1-dependent recruitment of the gamma-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J. Cell Biol. 172, 505–515 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luders, J., Patel, U. K. & Stearns, T. GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat. Cell Biol. 8, 137–147 (2006).

Article  PubMed  Google Scholar 

Fong, K. W., Choi, Y. K., Rattner, J. B. & Qi, R. Z. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex. Mol. Biol. Cell 19, 115–125 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomez-Ferreria, M. A. et al. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 17, 1960–1966 (2007).

Article  CAS  PubMed  Google Scholar 

Joukov, V., Walter, J. C. & De Nicolo, A. The Cep192-organized aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol. Cell 55, 578–591 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X. et al. Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome. J. Cell Sci. 122, 2240–2251 (2009).

Article  CAS  PubMed  Google Scholar 

Zimmerman, W. C., Sillibourne, J., Rosa, J. & Doxsey, S. J. Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642–3657 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rale, M. J., Romer, B.,  Mahon, B. P., Travis, S. M. & Petry, S. The conserved centrosomin motif, γTuNA, forms a dimer that directly activates microtubule nucleation by the γ-tubulin ring complex (γTuRC). eLife  https://doi.org/10.7554/eLife.80053 (2022).

Tungadi, E. A., Ito, A., Kiyomitsu, T. & Goshima, G. Human microcephaly ASPM protein is a

留言 (0)

沒有登入
gif