The protein corona from nanomedicine to environmental science

Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A decade of the protein corona. ACS Nano 11, 11773–11776 (2017).

Article  CAS  Google Scholar 

Lima, T., Bernfur, K., Vilanova, M. & Cedervall, T. Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. Sci. Rep. 10, 1129 (2020).

Article  CAS  Google Scholar 

Wan, S. et al. The ‘sweet’ side of the protein corona: effects of glycosylation on nanoparticle–cell interactions. ACS Nano 9, 2157–2166 (2015).

Article  CAS  Google Scholar 

Martel, J. et al. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis. Nanoscale 8, 5537–5545 (2016).

Article  CAS  Google Scholar 

Chetwynd, A. J., Zhang, W., Thorn, J. A., Lynch, I. & Ramautar, R. The nanomaterial metabolite corona determined using a quantitative metabolomics approach: a pilot study. Small 16, e2000295 (2020).

Article  Google Scholar 

Zhang, W., Chetwynd, A. J., Thorn, J. A., Lynch, I. & Ramautar, R. Understanding the significance of sample preparation in studies of the nanoparticle metabolite corona. ACS Meas. Au 2, 251–260 (2022).

Article  CAS  Google Scholar 

Lynch, I., Dawson, K. A. & Linse, S. Detecting cryptic epitopes created by nanoparticles. Sci. STKE 2006, pe14 (2006).

Article  Google Scholar 

Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

Article  CAS  Google Scholar 

Walczyk, D., Bombelli, F. B., Monopoli, M., Lynch, I. & Dawson, K. A. What the ‘cell’ sees in bionanoscience. J. Am. Chem. Soc. 132, 5761–5768 (2010).

Article  CAS  Google Scholar 

Hadjidemetriou, M. & Kostarelos, K. Evolution of the nanoparticle corona. Nat. Nanotechnol. 12, 288–290 (2017).

Article  CAS  Google Scholar 

Chetwynd, A. J. & Lynch, I. The rise of the nanomaterial metabolite corona, and emergence of the complete corona. Environ. Sci. Nano 7, 1041–1060 (2020).

Article  CAS  Google Scholar 

Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

Article  CAS  Google Scholar 

Bangham, A. D., Pethica, B. A. & Seaman, G. V. The charged groups at the interface of some blood cells. Biochem. J. 69, 12–19 (1958).

Article  CAS  Google Scholar 

Vroman, L. Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196, 476–477 (1962).

Article  CAS  Google Scholar 

Harley, J. D. & Margolis, J. Haemolytic activity of colloidal silica. Nature 189, 1010–1011 (1961).

Article  CAS  Google Scholar 

Zhang, X. et al. Intracellular activation of bioorthogonal nanozymes through endosomal proteolysis of the protein corona. ACS Nano 14, 4767–4773 (2020).

Article  CAS  Google Scholar 

Francia, V. et al. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 13, 11107–11121 (2019).

Article  CAS  Google Scholar 

Lesniak, A. et al. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6, 5845–5857 (2012).

Article  CAS  Google Scholar 

Bertrand, N. et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 8, 777 (2017).

Article  Google Scholar 

Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

Article  CAS  Google Scholar 

Chen, F. et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotechnol. 12, 387–393 (2017).

Article  CAS  Google Scholar 

Ge, C. et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl Acad. Sci. USA 108, 16968–16973 (2011).

Article  CAS  Google Scholar 

Fadare, O. O. et al. Eco-corona vs protein corona: effects of humic substances on corona formation and nanoplastic particle toxicity in Daphnia magna. Environ. Sci. Technol. 54, 8001–8009 (2020).

Article  CAS  Google Scholar 

Trinh, D. N. et al. Nanoparticle biomolecular corona-based enrichment of plasma glycoproteins for N-glycan profiling and application in biomarker discovery. ACS Nano 16, 5463–5475 (2022).

Article  CAS  Google Scholar 

Papafilippou, L., Claxton, A., Dark, P., Kostarelos, K. & Hadjidemetriou, M. Protein corona fingerprinting to differentiate sepsis from non-infectious systemic inflammation. Nanoscale 12, 10240–10253 (2020).

Article  CAS  Google Scholar 

Blume, J. E. et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 11, 3662 (2020).

Article  CAS  Google Scholar 

Hajipour, M. J., Laurent, S., Aghaie, A., Rezaee, F. & Mahmoudi, M. Personalized protein coronas: a ‘key’ factor at the nanobiointerface. Biomater. Sci. 2, 1210–1221 (2014).

Article  CAS  Google Scholar 

Wang, X. et al. Chiral surface of nanoparticles determines the orientation of adsorbed transferrin and its interaction with receptors. ACS Nano 11, 4606–4616 (2017).

Article  CAS  Google Scholar 

Mirshafiee, V., Kim, R., Park, S., Mahmoudi, M. & Kraft, M. L. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 75, 295–304 (2016).

Article  CAS  Google Scholar 

Ritz, S. et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16, 1311–1321 (2015).

Article  CAS  Google Scholar 

Mohr, K. et al. Aggregation behavior of polystyrene-nanoparticles in human blood serum and its impact on the in vivo distribution in mice. J. Nanomed. Nanotechnol. 5, 1000193 (2014).

Article  Google Scholar 

Dawson, K. A. & Yan, Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol. 16, 229–242 (2021). This article elaborates on how biological systems interact with nanomaterials and protein coronas and form bionanoscale synapses. The authors discuss future directions within protein corona research, such as the development of new technologies to study NPbiological interactions in cells.

Article  CAS  Google Scholar 

Caracciolo, G. et al. Disease-specific protein corona sensor arrays may have disease detection capacity. Nanoscale Horiz. 4, 1063–1076 (2019).

Article  CAS  Google Scholar 

Hadjidemetriou, M., Al-ahmady, Z., Buggio, M., Swift, J. & Kostarelos, K. A novel scavenging tool for cancer biomarker discovery based on the blood-circulating nanoparticle protein corona. Biomaterials 188, 118–129 (2019).

Article  CAS  Google Scholar 

Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).

Article  CAS  Google Scholar 

Nasser, F., Constantinou, J. & Lynch, I. Nanomaterials in the environment acquire an “eco-corona” impacting their toxicity to Daphnia magna — a call for updating toxicity testing policies. Proteomics 20, e1800412 (2020).

Article  Google Scholar 

Lynch, I., Dawson, K. A., Lead, J. R. & Valsami-Jones, E. in Frontiers of Nanoscience Vol. 7 (eds Lead, J. R. & Valsami-Jones, E.) 127–156 (Elsevier, 2014).

Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, eabd1211 (2020).

Article  CAS  Google Scholar 

Deloid, G. M. et al. Incineration-generated polyethylene micro-nanoplastics increase triglyceride lipolysis and absorption in an in vitro small intestinal epithelium model. Environ. Sci. Technol. 56, 12288–12297 (2022).

Article  CAS  Google Scholar 

Ouassil, N., Pinals, R. L., Del Bonis-O’Donnell, J. T., Wang, J. W. & Landry, M. P. Supervised learning model predicts protein adsorption to carbon nanotubes. Sci. Adv. 8, eabm0898 (2022). This study utilizes machine learning algorithms to predict protein corona formation on CNTs by solely utilizing protein sequences from proteomic data sets. Moreover, AI identifies the most important protein features associated with high binding affinity to CNTs.

Article  CAS  Google Scholar 

Blunk, T., Hochstrasser, D. F., Sanchez, J. ‐C., Müller, B. W. & Müller, R. H. Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface‐modified latex particles evaluated by two‐dimensional polyacrylamide gel electrophoresis. Electrophoresis 14, 1382–1387 (1993).

Article  CAS  Google Scholar 

Norman, M. E., Williams, P. & Illum, L. In vivo evaluation of protein adsorption to sterically stabilised colloidal carriers. J. Biomed. Mater. Res. 27, 8610866 (1993).

Article  Google Scholar 

Norman, M. E., Williams, P. & Illum, L. Influence of block copolymers on the adsorption of plasma proteins to microspheres. Biomaterials 14, 193–202 (1993).

Article  CAS  Google Scholar 

Gebauer, J. S. et al. Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28, 9673–9679 (2012).

Article  CAS  Google Scholar 

Pan, H., Qin, M., Meng, W., Cao, Y. & Wang, W. How do proteins unfold upon adsorption on nanoparticle surfaces? Langmuir 28, 12779–12787 (2012).

Article  CAS  Google Scholar 

Roach, P., Farrar, D. & Perry, C. C. Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168–8173 (2005).

Article 

留言 (0)

沒有登入
gif