Nucleotide metabolism: a pan-cancer metabolic dependency

Biancur, D. E. et al. Functional genomics identifies metabolic vulnerabilities in pancreatic cancer. Cell Metab. 33, 199–210 (2021).

Article  CAS  PubMed  Google Scholar 

Li, L. et al. Identification of DHODH as a therapeutic target in small cell lung cancer. Sci. Transl Med. 11, 517 (2019).

Article  Google Scholar 

Zhu, X. G. et al. Functional genomics in vivo reveal metabolic dependencies of pancreatic cancer cells. Cell Metab. 33, 211–221 (2021).

Article  CAS  PubMed  Google Scholar 

Sykes, D. B. et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 167, 171–186.e15 (2016). This study demonstrated the potential of DHODH inhibitors to induce leukaemia differentiation and sparked renewed clinical interest in DHODH inhibitors to treat cancer.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koundinya, M. et al. Dependence on the pyrimidine biosynthetic enzyme DHODH is a synthetic lethal vulnerability in mutant KRAS-driven cancers. Cell Chem. Biol. 25, 705–717.e11 (2018).

Article  CAS  PubMed  Google Scholar 

White, R. M. et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471, 518–522 (2011). This study established the paradigm of pyrimidine nucleotide abundance as a crucial regulator of Pol II elongation control through promoter-proximal pausing and demonstrated the relevance of this mechanism in human melanoma cells.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X. et al. Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Sci. Transl. Med. 11, eaau4972 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Santana-Codina, N. et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat. Commun. 9, 4945 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Brown, K. K., Spinelli, J. B., Asara, J. M. & Toker, A. Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer. Cancer Discov. 7, 391–399 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathur, D. et al. PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition. Cancer Discov. 7, 380–390 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shukla, S. K. et al. MUC1 and HIF-1α signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell 32, 71–87.e7 (2017). This study rigorously validated the role that competition between pyrimidine nucleotides and gemcitabine metabolites plays in gemcitabine resistance and showed that hyperactive glucose consumption supports augmented dCTP synthesis in PDAC.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maroun, J. et al. Multicenter phase II study of brequinar sodium in patients with advanced lung cancer. Cancer Chemother. Pharmacol. 32, 64–66 (1993).

Article  CAS  PubMed  Google Scholar 

Moore, M. et al. Multicenter phase II study of brequinar sodium in patients with advanced gastrointestinal cancer. Invest. New Drugs 11, 61–65 (1993).

Article  CAS  PubMed  Google Scholar 

Natale, R. et al. Multicenter phase II trial of brequinar sodium in patients with advanced melanoma. Ann. Oncol. 3, 659–660 (1992).

Article  CAS  PubMed  Google Scholar 

Cody, R. et al. Multicenter phase II study of brequinar sodium in patients with advanced breast cancer. Am. J. Clin. Oncol. 16, 526–528 (1993).

Article  CAS  PubMed  Google Scholar 

Lane, A. N. & Fan, T. W.-M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43, 2466–2485 (2015). This review provides a quantitative analysis of the (d)NTP requirements of proliferating mammalian cells, as well as a comprehensive discussion of how (d)NTP pools are expanded to support cell division under physiological conditions.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tong, X., Zhao, F. & Thompson, C. B. The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr. Opin. Genet. Dev. 19, 32–37 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Villa, E., Ali, E. S., Sahu, U. & Ben-Sahra, I. Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers 11, 688 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, J. et al. Identification and characterization of human uracil phosphoribosyltransferase (UPRTase). J. Hum. Genet. 52, 415–422 (2007).

Article  CAS  PubMed  Google Scholar 

Pérignon, J. L., Bories, D. M., Houllier, A. M., Thuillier, L. & Cartier, P. H. Metabolism of pyrimidine bases and nucleosides by pyrimidine-nucleoside phosphorylases in cultured human lymphoid cells. Biochim. Biophys. Acta 928, 130–136 (1987).

Article  PubMed  Google Scholar 

Ferraro, P., Franzolin, E., Pontarin, G., Reichard, P. & Bianchi, V. Quantitation of cellular deoxynucleoside triphosphates. Nucleic Acids Res. 38, e85 (2010).

Article  PubMed  Google Scholar 

Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol. Cell Biochem. 140, 1–22 (1994).

Article  CAS  PubMed  Google Scholar 

Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323–1328 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stillman, B. Deoxynucleoside triphosphate (dNTP) synthesis and destruction regulate the replication of both cell and virus genomes. Proc. Natl Acad. Sci. USA 110, 14120–14121 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawada, K., Toda, K. & Sakai, Y. Targeting metabolic reprogramming in KRAS-driven cancers. Int. J. Clin. Oncol. 22, 651–659 (2017).

Article  CAS  PubMed  Google Scholar 

Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

Article  CAS  PubMed  Google Scholar 

Dong, Y., Tu, R., Liu, H. & Qing, G. Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Signal. Transduct. Target. Ther. 5, 124 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Liu, Y.-C. et al. Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS ONE 3, e2722 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

Article  CAS  PubMed  Google Scholar 

Franzolin, E. et al. The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc. Natl Acad. Sci. USA 110, 14272–14277 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farber, S. & Diamond, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948). This seminal study first identified nucleotide synthesis inhibition as a cancer treatment and reported the first-ever remissions in childhood leukaemia.

Article  CAS  PubMed  Google Scholar 

Waltham, M. C., Holland, J. W., Robinson, S. C., Winzor, D. J. & Nixon, P. F. Direct experimental evidence for competitive inhibition of dihydrofolate reductase by methotrexate. Biochem. Pharmacol. 37, 535–539 (1988).

Article  CAS  PubMed  Google Scholar 

Cronstein, B. N. & Aune, T. M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 16, 145–154 (2020).

Article  CAS  PubMed  Google Scholar 

Friedman, B. & Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine 86, 301–307 (2019).

Article  CAS  PubMed  Google Scholar 

Neradil, J., Pavlasova, G. & Veselska, R. New mechanisms for an old drug; DHFR- and non-DHFR-mediated effects of methotrexate in cancer cells. Klin. Onkol. 25, 2S87–92 (2012).

PubMed  Google Scholar 

Sramek, M., Neradil, J., Sterba, J. & Veselska, R. Non-DHFR-mediated effects of methotrexate in osteosarcoma cell lines: epigenetic alterations and enhanced cell differentiation. Cancer Cell Int. 16, 14 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Peters, G. J. et al. Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim. Biophys. Acta 1587, 194–205 (2002).

留言 (0)

沒有登入
gif