Delayed Outgrowth in Response to the BDNF and Altered Synaptic Proteins in Neurons From SHR Rats

Polanczyk GV, Salum GA, Sugaya LS, Caye A, Rohde LA (2015) Annual research review: a meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J Child Psychol Psychiatry 56(3):345–365. https://doi.org/10.1111/jcpp.12381

Article  PubMed  Google Scholar 

Simon V, Czobor P, Bálint S, Mészáros A, Bitter I (2009) Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry J Mental Sci 194(3):204–211. https://doi.org/10.1192/bjp.bp.107.048827

Article  Google Scholar 

American Psychiatric Association (2022) Diagnostic and statistical manual of mental disorders, 5th edn. https://doi.org/10.1176/appi.books.9780890425787

Faraone SV, Biederman J (1998) Neurobiology of attention-deficit hyperactivity disorder. Biol Psychiat 44(10):951–958. https://doi.org/10.1016/s0006-3223(98)00240-6

Article  CAS  PubMed  Google Scholar 

Fassbender C, Schweitzer JB (2006) Is there evidence for neural compensation in attention deficit hyperactivity disorder? A review of the functional neuroimaging literature. Clin Psychol Rev 26(4):445–465. https://doi.org/10.1016/j.cpr.2006.01.003

Article  PubMed  PubMed Central  Google Scholar 

Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D, Clasen L, Evans A, Giedd J, Rapoport JL (2007) Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci USA 104(49):19649–19654. https://doi.org/10.1073/pnas.0707741104

Article  PubMed  PubMed Central  Google Scholar 

Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, Castellanos FX (2012) Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry 169(10):1038–1055. https://doi.org/10.1176/appi.ajp.2012.11101521

Article  PubMed  Google Scholar 

Eells JB (2003) The control of dopamine neuron development, function and survival: insights from transgenic mice and the relevance to human disease. Curr Med Chem 10(10):857–870. https://doi.org/10.2174/0929867033457700

Article  CAS  PubMed  Google Scholar 

Meneses A, Perez-Garcia G, Ponce-Lopez T, Tellez R, Gallegos-Cari A, Castillo C (2011) Spontaneously hypertensive rat (SHR) as an animal model for ADHD: a short overview. Rev Neurosci 22(3):365–371. https://doi.org/10.1515/RNS.2011.024

Article  CAS  PubMed  Google Scholar 

Hoogman M, Bralten J, Hibar DP et al (2017) Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 4(4):310–319. https://doi.org/10.1016/S2215-0366(17)30049-4

Article  PubMed  PubMed Central  Google Scholar 

Hoogman M, Muetzel R, Guimaraes JP et al (2019) Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry 176(7):531–542. https://doi.org/10.1176/appi.ajp.2019.18091033

Article  PubMed  PubMed Central  Google Scholar 

Postema MC, Hoogman M, Ambrosino S et al (2021) Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets. J Child Psychol Psychiatry 62(10):1202–1219. https://doi.org/10.1111/jcpp.13396

Article  PubMed  PubMed Central  Google Scholar 

Norman LJ, Sudre G, Bouyssi-Kobar M, Sharp W, Shaw P (2022) An examination of the relationships between attention/deficit hyperactivity disorder symptoms and functional connectivity over time. Neuropsychopharmacology 47(3):704–710. https://doi.org/10.1038/s41386-021-00958-y

Article  PubMed  Google Scholar 

Gálvez JM, Forero DA, Fonseca DJ, Mateus HE, Talero-Gutierrez C, Velez-van-Meerbeke A (2014) Evidence of association between SNAP25 gene and attention deficit hyperactivity disorder in a Latin American sample. Atten Deficit Hyperact Disord 6(1):19–23. https://doi.org/10.1007/s12402-013-0123-9

Article  Google Scholar 

Gao Q, Liu L, Chen Y, Li H, Yang L, Wang Y, Qian Q (2015) Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuropsychopharmacol Biol Psychiatry 57:132–139. https://doi.org/10.1016/j.pnpbp.2014.11.001

Article  CAS  PubMed  Google Scholar 

Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiat 57(11):1313–1323. https://doi.org/10.1016/j.biopsych.2004.11.024

Article  CAS  PubMed  Google Scholar 

Hawi Z, Matthews N, Wagner J, Wallace RH, Butler TJ, Vance A, Kent L, Gill M, Bellgrove MA (2013) DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS ONE 8(4):e60274. https://doi.org/10.1371/journal.pone.0060274

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson MC (2000) Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 24(1):51–57. https://doi.org/10.1016/s0149-7634(99)00064-0

Article  CAS  PubMed  Google Scholar 

Cohen-Cory S, Fraser SE (1995) Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 378(6553):192–196. https://doi.org/10.1038/378192a0

Article  CAS  PubMed  Google Scholar 

McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15(4):791–803. https://doi.org/10.1016/0896-6273(95)90171-x

Article  CAS  PubMed  Google Scholar 

McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22:295–318. https://doi.org/10.1146/annurev.neuro.22.1.295

Article  CAS  PubMed  Google Scholar 

Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23. https://doi.org/10.1038/nrn3379

Article  CAS  PubMed  Google Scholar 

Liu DY, Shen XM, Yuan FF, Guo OY, Zhong Y, Chen JG, Zhu LQ, Wu J (2015) The physiology of BDNF and its relationship with ADHD. Mol Neurobiol 52(3):1467–1476. https://doi.org/10.1007/s12035-014-8956-6

Article  CAS  PubMed  Google Scholar 

Shim SH, Hwangbo Y, Yoon HJ, Kwon YJ, Lee HY, Hwang JA, Kim YK (2015) Increased levels of plasma glial-derived neurotrophic factor in children with attention deficit hyperactivity disorder. Nord J Psychiatry 69(7):546–551. https://doi.org/10.3109/08039488.2015.1014834

Article  PubMed  Google Scholar 

Jeong HI, Ji ES, Kim SH, Kim TW, Baek SB, Choi SW (2014) Treadmill exercise improves spatial learning ability by enhancing brain-derived neurotrophic factor expression in the attention-deficit/hyperactivity disorder rats. J Exerc Rehabil 10(3):162–167. https://doi.org/10.12965/jer.140111

Nunes F, Pochmann D, Almeida AS, Marques DM, Porciúncula LO (2018) Differential behavioral and biochemical responses to caffeine in male and female rats from a validated model of attention deficit and hyperactivity disorder. Mol Neurobiol 55(11):8486–8498. https://doi.org/10.1007/s12035-018-1000-5

Article  CAS  PubMed  Google Scholar 

Tsai SJ (2007) Attention-deficit hyperactivity disorder may be associated with decreased central brain-derived neurotrophic factor activity: clinical and therapeutic implications. Med Hypotheses 68(4):896–899. https://doi.org/10.1016/j.mehy.2006.06.025

Article  CAS  PubMed  Google Scholar 

Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350(6315):230–232. https://doi.org/10.1038/350230a0

Article  CAS  PubMed  Google Scholar 

Fumagalli F, Racagni G, Colombo E, Riva MA (2003) BDNF gene expression is reduced in the frontal cortex of dopamine transporter knockout mice. Mol Psychiatry 8(11):898–899. https://doi.org/10.1038/sj.mp.4001370

Article  CAS  PubMed  Google Scholar 

Alves CB, Almeida AS, Marques DM, Faé AHL, Machado ACL, Oliveira DL, Portela LVC, Porciúncula LO (2020) Caffeine and adenosine A2A receptors rescue neuronal development in vitro of frontal cortical neurons in a rat model of attention deficit and hyperactivity disorder. Neuropharmacology 166:107782. https://doi.org/10.1016/j.neuropharm.2019.107782

Article  CAS  PubMed  Google Scholar 

Leffa DT, Panzenhagen AC, Salvi AA, Bau CHD, Pires GN, Torres ILS, Rohde LA, Rovaris DL, Grevet EH (2019) Systematic review and meta-analysis of the behavioral effects of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 100:166–179. https://doi.org/10.1016/j.neubiorev.2019.02.019

Article  CAS  PubMed  Google Scholar 

Kantak KM (2022) Rodent models of attention-deficit hyperactivity disorder: an updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 216:173378. https://doi.org/10.1016/j.pbb.2022.173378

Article  CAS  PubMed  Google Scholar 

Sagvolden T (2000) Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 24(1):31–39. https://doi.org/10.1016/s0149-7634(99)00058-5

Article  CAS  PubMed  Google Scholar 

Yan Y, Eipper BA, Mains RE (2016) Kalirin is required for BDNF-TrkB stimulated neurite outgrowth and branching. Neuropharmacology 107:227–238. https://doi.org/10.1016/j.neuropharm.2016.03.050

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribeiro FF, Neves-Tomé R, Assaife-Lopes N, Santos TE, Silva RF, Brites D, Ribeiro JA, Sousa MM, Sebastião AM (2016) Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons. Brain Struct Funct 221(5):2777–2799. https://doi.org/10.1007/s00429-015-1072-1

Article  CAS  PubMed  Google Scholar 

Cline HT (2001) Dendritic arbor development and synaptogenesis. Curr Opin Neurobiol 11(1):118–126. https://doi.org/10.1016/s0959-4388(00)00182-3

留言 (0)

沒有登入
gif