Built Environment Features Obtained from Google Street View Are Associated with Coronary Artery Disease Prevalence: A Deep-Learning Framework

Abstract

Background: Built environment plays an important role in development of cardiovascular disease. Tools to evaluate the built environment using machine vision and informatic approaches has been limited. We sought to investigate the association between machine vision-based built environment and prevalence of cardiometabolic disease in urban cities. Methods: This cross-sectional study used features extracted from Google Street view (GSV) images to measure the built environment and link them with prevalence of cardiometabolic disease. Convolutional neural networks, light gradient boosting machines and activation maps were utilized to predict health outcomes and identify feature associations with coronary heart disease (CHD). The study obtained 0.53 million GSV images covering 789 census tracts in 7 cities (Cleveland, OH; Fremont, CA; Kansas City, MO; Detroit, MI; Bellevue, WA; Brownsville, TX; and Denver, CO). Analyses were conducted from February 2022 to December 2022. We used census tract-level data from the Centers for Disease Control and Prevention's PLACES dataset. Main outcomes included census tract-level estimated prevalence of CHD based on GSV built environment features. Results: Built environment features extracted from GSV using deep learning predicted 63% of the census tract variation in CHD prevalence. The ExtraTrees Regressor achieved the best result among all models with the lowest average mean absolute error of 1.11% and Root mean square of error of 1.58. The addition of GSV features outperformed and improved a model that only included census-tract level age, sex, race, income and education. Activation maps from the features revealed a set of neighborhood features represented by buildings and roads associated with CHD prevalence. Conclusions: In this cross-sectional study, a significant portion of CHD prevalence were explained by GSV-based built environment factors analyzed using deep learning, independent of census tract demographics. Machine vision enabled assessment of the built environment could help play a significant role in designing and improving heart-heathy cities.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was funded by the National Institute on Minority Health and Health Disparities Award # P50MD017351 and 1R35ES031702-01 awarded to Dr. Rajagopalan.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Not Applicable

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The research described in this manuscript was exempted from IRB approval by the University Hospitals institutional review board.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Not Applicable

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Not Applicable

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Not Applicable

Data Availability

We confirm that all data referred to in this manuscript are available upon request. Please contact the corresponding author for access to the data.

留言 (0)

沒有登入
gif