A three-marker signature identifies senescence in human breast cancer exposed to neoadjuvant chemotherapy

Saleh T, Bloukh S, Carpenter VJ, Alwohoush E, Bakeer J, Darwish S, Azab B, Gewirtz DA (2020) Therapy-induced senescence: an “old” friend becomes the enemy. Cancers (Basel) 12:822. https://doi.org/10.3390/cancers12040822

Article  CAS  PubMed  Google Scholar 

Wang B, Kohli J, Demaria M (2020) Senescent cells in cancer therapy: friends or foes? Trends Cancer 6:838–857. https://doi.org/10.1016/j.trecan.2020.05.004

Article  CAS  PubMed  Google Scholar 

Beck J, Horikawa I, Harris C (2020) Cellular senescence: mechanisms, morphology, and mouse models. Vet Pathol 57:747–757. https://doi.org/10.1177/0300985820943841

Article  CAS  PubMed  Google Scholar 

Wang X, Tsao S-W, Wong Y-C, Cheung A (2003) Induction of senescent-like growth arrest as a new target in anticancer treatment. Curr Cancer Drug Targets 3:153–159. https://doi.org/10.2174/1568009033482001

Article  CAS  PubMed  Google Scholar 

Robles SJ, Adami GR (1998) Agents that cause DNA double strand breaks lead to P16INK4a enrichment and the premature senescence of normal fibrolasts. Oncogene 16:1113–1123. https://doi.org/10.1038/sj.onc.1201862

Article  CAS  PubMed  Google Scholar 

Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767. https://doi.org/10.1038/nrc2961

Article  CAS  PubMed  Google Scholar 

Rodier F, Muñoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppé JP, Campeau E, Beauséjour CM, Kim SH et al (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124:68–81. https://doi.org/10.1242/jcs.071340

Article  CAS  PubMed  Google Scholar 

Rodier F, Coppé J, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979. https://doi.org/10.1038/ncb1909

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu CH, Altschuler SJ, Wu LF (2019) Patterns of early P21 dynamics determine proliferation-senescence cell fate after chemotherapy. Cell 178:361-373.e12. https://doi.org/10.1016/J.CELL.2019.05.041

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brenner AJ, Stampfer MR, Aldaz CM (1998) Increased P16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with P16 inactivation. Oncogene 17:199–205. https://doi.org/10.1038/sj.onc.1201919

Article  CAS  PubMed  Google Scholar 

Saleh T, Carpenter VJ, Bloukh S, Gewirtz DA (2022) Targeting tumor cell senescence and polyploidy as potential therapeutic strategies. Semin Cancer Biol 81:37–47. https://doi.org/10.1016/J.SEMCANCER.2020.12.010

Article  CAS  PubMed  Google Scholar 

Mosieniak G, Sliwinska MA, Alster O, Strzeszewska A, Sunderland P, Piechota M, Was H, Sikora E (2015) Polyploidy formation in doxorubicin-treated cancer cells can favor escape from senescence. Neoplasia 17:882–893. https://doi.org/10.1016/j.neo.2015.11.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskensi M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci 92:9363–9367. https://doi.org/10.1073/pnas.92.20.9363

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurz DJDJ, Decary S, Hong Y, Erusalimsky JDJD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622. https://doi.org/10.1242/jcs.113.20.3613

Article  CAS  PubMed  Google Scholar 

Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K, Gorospe M (2019) Transcriptome signature of cellular senescence. Nucl Acids Res 47:7294–7305. https://doi.org/10.1093/nar/gkz555

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M (2017) Unmasking transcriptional heterogeneity in senescent cells. Curr Biol 27:2652–2660. https://doi.org/10.1016/j.cub.2017.07.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schleich K, Kase J, Dörr JR, Trescher S, Bhattacharya A, Yu Y, Wailes EM, Fan DNY, Lohneis P, Milanovic M et al (2020) H3K9me3-mediated epigenetic regulation of senescence in mice predicts outcome of lymphoma patients. Nat Commun. https://doi.org/10.1038/s41467-020-17467-z

Article  PubMed  PubMed Central  Google Scholar 

Davalos AR, Coppe JP, Campisi J, Desprez PY (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 29:273–283. https://doi.org/10.1007/s10555-010-9220-9

Article  PubMed  PubMed Central  Google Scholar 

Saleh T, Tyutynuk-Massey L, Cudjoe EKEK, Idowu MOMO, Landry JWJW, Gewirtz DADA, Tyutyunyk-Massey L, Cudjoe EKEK, Idowu MOMO, Landry JWJW et al (2018) Non-cell autonomous effects of the senescence-associated secretory phenotype in cancer therapy. Front Oncol 8:1–14. https://doi.org/10.3389/fonc.2018.00164

Article  Google Scholar 

Sikora E, Mosieniak G, Alicja Sliwinska M (2016) Morphological and functional characteristic of senescent cancer cells. Curr Drug Targets 17:377–387. https://doi.org/10.2174/1389450116666151019094724

Article  CAS  PubMed  Google Scholar 

Elmore LW, Rehder CW, Di X, McChesney PA, Jackson-cook CK, Gewirtz DA, Holt SE (2002) Adriamycin-induced senescence in breast tumor cells involves functional P53 and telomere dysfunction. J Biol Chem 277:35509–35515. https://doi.org/10.1074/jbc.M205477200

Article  CAS  PubMed  Google Scholar 

Patel NH, Bloukh S, Alwohosh E, Alhesa A, Saleh T, Gewirtz DA (2021) Autophagy and senescence in cancer therapy. Adv Cancer Res 150:1–74. https://doi.org/10.1016/BS.ACR.2021.01.002

Article  PubMed  Google Scholar 

Zhang JW, Zhang SS, Song JR, Sun K, Zong C, Zhao QD, Liu WT, Li R, Wu MC, Wei LX (2014) Autophagy inhibition switches low-dose camptothecin-induced premature senescence to apoptosis in human colorectal cancer cells. Biochem Pharmacol 90:265–275. https://doi.org/10.1016/j.bcp.2014.05.009

Article  CAS  PubMed  Google Scholar 

Goehe RW, Di X, Sharma K, Bristol ML, Henderson SC, Valerie K, Rodier F, Davalos AR, Gewirtz DA (2012) The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep? J Pharmacol Exp Ther 343:763–778

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saleh T, Tyutyunyk-Massey L, Murray GFGF, Alotaibi MRMRMR, Kawale ASASAS, Elsayed Z, Henderson SCSC, Yakovlev V, Elmore LWLWLW, Toor A et al (2019) Tumor cell escape from therapy-induced senescence. Biochem Pharmacol 162:202–212. https://doi.org/10.1016/j.bcp.2018.12.013

Milanovic M, Yu Y, Schmitt CA (2018) The senescence-stemness alliance—a cancer-hijacked regeneration principle. Trends Cell Biol 28:1049–1061. https://doi.org/10.1016/j.tcb.2018.09.001

Article  PubMed  Google Scholar 

Yang L, Fang J, Chen J (2017) Tumor cell senescence response produces aggressive variants. Cell Death Discov 3:17049. https://doi.org/10.1038/cddiscovery.2017.49

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duy C, Li M, Teater M, Meydan C, Garrett-bakelman FE, Lee TC, Chin CR, Durmaz C, Kawabata KC, Dhimolea E et al (2021) Chemotherapy induces senescence-like resilient cells capable of initiating AML recurrence. Cancer Discov 11:candisc.1375.2020. https://doi.org/10.1158/2159-8290.CD-20-1375

Demaria M, Leary MNO, Chang J, Shao L, Liu S, Alimirah F, Koenig K, Le C, Mitin N, Deal AM et al (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7:165–177. https://doi.org/10.1158/2159-8290.CD-16-0241

Article  CAS  PubMed  Google Scholar 

Bojko A, Czarnecka-Herok J, Charzynska A, Dabrowski M, Sikora E (2019) Diversity of the senescence phenotype of cancer cells treated with chemotherapeutic agents. Cells 8:1501. https://doi.org/10.3390/cells8121501

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408. https://doi.org/10.1038/nrc3960

Article  CAS  PubMed  Google Scholar 

Chakradeo S, Elmore LW, Gewirtz DA (2016) Is senescence reversible? Curr Drug Targets 17:460–466. https://doi.org/10.2174/1389450116666150825113500

Article  CAS  PubMed  Google Scholar 

Litwiniec A, Gackowska L, Helmin-Basa A, Żuryń A, Grzanka A (2013) Low-dose etoposide-treatment induces endoreplication and cell death accompanied by cytoskeletal alterations in A549 cells: does the response involve senescence? the possible role of vimentin. Cancer Cell Int 13:9. https://doi.org/10.1186/1475-2867-13-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palaniyappan A (2009) Cyclophosphamide induces premature senescence in normal human fibroblasts by activating MAP kinases. Biogerontology 10:677–682. https://doi.org/10.1007/s10522-009-9215-5

Article  CAS  PubMed  Google Scholar 

Vijayaraghavan S, Karakas C, Doostan I, Chen X, Bui T, Yi M, Raghavendra AS, Zhao Y, Bashour SI, Ibrahim NK et al (2017) CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin e negative cancers. Nat Commun 8:1–17. https://doi.org/10.1038/ncomms15916

Article  CAS 

留言 (0)

沒有登入
gif