Retrospect of the Two-Year Debate: What Fuels the Evolution of SARS-CoV-2: RNA Editing or Replication Error?

Li Y, Yang XN, Wang N, Wang HY, Yin B, Yang XP, Jiang WQ (2020) The divergence between SARS-CoV-2 and RaTG13 might be overestimated due to the extensive RNA modification. Future Virol 15:341–347

Article  CAS  Google Scholar 

Zhang YP, Jiang W, Li Y, Jin XJ, Yang XP, Zhang PR, Jiang WQ, Yin B (2021) Fast evolution of SARS-CoV-2 driven by deamination systems in hosts. Future Virol 16:587–590

Article  PubMed  PubMed Central  Google Scholar 

Zhao M, Li C, Dong Y, Wang X, Jiang W, Chen Y (2022) Nothing in SARS-CoV-2 makes sense except in the light of RNA modification? Future Virol 17:769

Article  CAS  Google Scholar 

Eisenberg E (2012) Bioinformatic approaches for identification of A-to-I editing sites. Curr Top Microbiol Immunol 353:145–162

CAS  PubMed  Google Scholar 

Picardi E, Pesole G (2013) REDItools: high-throughput RNA editing detection made easy. Bioinformatics 29:1813–1814

Article  CAS  PubMed  Google Scholar 

Porath HT, Carmi S, Levanon EY (2014) A genome-wide map of hyper-edited RNA reveals numerous new sites. Nat Commun 5:4726

Article  CAS  PubMed  Google Scholar 

Li Y, Yang X, Wang N, Wang H, Yin B, Yang X, Jiang W (2020) SNPs or RNA modifications? Concerns on mutation-based evolutionary studies of SARS-CoV-2. PLoS ONE 15:e0238490

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Giorgio S, Martignano F, Torcia MG, Mattiuz G, Conticello SG (2020) Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Sci Adv 6:eabb5813

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai H, Liu X, Zheng X (2022) RNA editing detection in SARS-CoV-2 transcriptome should be different from traditional SNV identification. J Appl Genet 63:587–594

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zong J, Zhang Y, Guo F, Wang C, Li H, Lin G, Jiang W, Song X, Zhang X, Huang F et al (2022) Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2. J Appl Genet 63:413–421

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan Y, Cai W, Li H (2023) Chloroplast C-to-U RNA editing in vascular plants is adaptive due to its restorative effect: testing the restorative hypothesis. RNA 29:141–152

Article  PubMed  Google Scholar 

Li Q, Wang Z, Lian J, Schiott M, Jin L, Zhang P, Zhang Y, Nygaard S, Peng Z, Zhou Y et al (2014) Caste-specific RNA editomes in the leaf-cutting ant Acromyrmex echinatior. Nat Commun 5:4943

Article  CAS  PubMed  Google Scholar 

Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, O’Connell MA, Li JB (2013) Identifying RNA editing sites using RNA sequencing data alone. Nat Methods 10:128–132

Article  CAS  PubMed  PubMed Central  Google Scholar 

Picardi E, Mansi L, Pesole G (2021) Detection of A-to-I RNA Editing in SARS-COV-2. Genes (Basel) 13:41

Article  PubMed  Google Scholar 

Song Y, He X, Yang W, Wu Y, Cui J, Tang T, Zhang R (2022) Virus-specific editing identification approach reveals the landscape of A-to-I editing and its impacts on SARS-CoV-2 characteristics and evolution. Nucleic Acids Res 50:2509–2521

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K (2000) A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6:755–767

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000) dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA 6:1004–1018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porath HT, Knisbacher BA, Eisenberg E, Levanon EY (2017) Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol 18:185

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Yang X, Wang N, Wang H, Yin B, Yang X, Jiang W (2020) Mutation profile of over 4500 SARS-CoV-2 isolations reveals prevalent cytosine-to-uridine deamination on viral RNAs. Future Microbiol 15:1343–1352

Article  CAS  PubMed  Google Scholar 

Ramaswami G, Lin W, Piskol R, Tan MH, Davis C, Li JB (2012) Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods 9:579–581

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Xiao X (2015) Genome sequence-independent identification of RNA editing sites. Nat Methods 12:347–350

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM, Cheung VG (2011) Widespread RNA and DNA sequence differences in the human transcriptome. Science 333:53–58

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin W, Piskol R, Tan MH, Li JB (2012) Comment on “Widespread RNA and DNA sequence differences in the human transcriptome.” Science 335:1302 (author reply 1302)

Article  CAS  PubMed  Google Scholar 

Martignano F, Di Giorgio S, Mattiuz G, Conticello SG (2022) Commentary on “Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2.” J Appl Genet 63:423–428

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei L (2022) Reconciling the debate on deamination on viral RNA. J Appl Genet 63:583–585

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Liu X, Zhou J, Dong Y, Jiang W, Jiang W (2022) Rampant C-to-U deamination accounts for the intrinsically high mutation rate in SARS-CoV-2 spike gene. RNA 28:917–926

Article  CAS  PubMed  Google Scholar 

Zhu L, Wang Q, Zhang W, Hu H, Xu K (2022) Evidence for selection on SARS-CoV-2 RNA translation revealed by the evolutionary dynamics of mutations in UTRs and CDSs. RNA Biol 19:866–876

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shu Y, McCauley J (2017) GISAID: Global initiative on sharing all influenza data—from vision to reality. Euro Surveill. https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif