Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action

Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).

Article  CAS  PubMed  Google Scholar 

Campbell, J. E. & Drucker, D. J. Pharmacology physiology and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).

Article  CAS  PubMed  Google Scholar 

McLean, B. A. et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation. Endocr. Rev. 42, 101–132 (2021).

Article  PubMed  Google Scholar 

Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

Article  CAS  PubMed  Google Scholar 

Mulvihill, E. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev. 35, 992–1019 (2014).

Article  CAS  PubMed  Google Scholar 

Hammoud, R. & Drucker, D. J. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 19, 201–216 (2023).

Article  CAS  PubMed  Google Scholar 

Shah, A. D. et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol. 3, 105–113 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Haffner, S. M., Lehto, S., Ronnemaa, T., Pyorala, K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).

Article  CAS  PubMed  Google Scholar 

Drucker, D. J. & Goldfine, A. B. Cardiovascular safety and diabetes drug development. Lancet 377, 977–979 (2011).

Article  PubMed  Google Scholar 

Muller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

Article  CAS  PubMed  Google Scholar 

Hernandez, A. F. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392, 1519–1529 (2018).

Article  CAS  PubMed  Google Scholar 

Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

Article  CAS  PubMed  Google Scholar 

Gerstein, H. C. et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N. Engl. J. Med. 385, 896–907 (2021).

Article  CAS  PubMed  Google Scholar 

Braunwald, E. Gliflozins in the management of cardiovascular disease. N. Engl. J. Med. 386, 2024–2034 (2022).

Article  CAS  PubMed  Google Scholar 

Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015).

Article  CAS  PubMed  Google Scholar 

Holman, R. R. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377, 1228–1239 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruff, C. T. et al. Subcutaneous infusion of exenatide and cardiovascular outcomes in type 2 diabetes: a non-inferiority randomized controlled trial. Nat. Med. 28, 89–95 (2022).

Article  CAS  PubMed  Google Scholar 

Viljoen, A. & Bain, S. C. Glucagon-like peptide 1 therapy: from discovery to type 2 diabetes and beyond. Endocrinol. Metab. 38, 25–33 (2023).

Article  Google Scholar 

Trujillo, J. M., Nuffer, W. & Smith, B. A. GLP-1 receptor agonists: an updated review of head-to-head clinical studies. Ther. Adv. Endocrinol. Metab. 12, 2042018821997320 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nathan, D. M. et al. Glycemia reduction in type 2 diabetes — microvascular and cardiovascular outcomes. N. Engl. J. Med. 387, 1075–1088 (2022).

Article  PubMed  Google Scholar 

Drucker, D. J. GLP-1 physiology informs the pharmacotherapy of obesity. Mol. Metab. 57, 101351 (2022).

Article  CAS  PubMed  Google Scholar 

Davies, M. J. et al. Liraglutide and cardiovascular outcomes in adults with overweight or obesity: a post hoc analysis from SCALE randomized controlled trials. Diabetes Obes. Metab. 20, 734–739 (2018).

Article  CAS  PubMed  Google Scholar 

Kosiborod, M. N. et al. Semaglutide improves cardiometabolic risk factors in adults with overweight or obesity: STEP 1 and 4 exploratory analyses. Diabetes Obes. Metab. 25, 468–478 (2023).

Article  CAS  PubMed  Google Scholar 

Lingvay, I. et al. Semaglutide for cardiovascular event reduction in people with overweight or obesity: SELECT study baseline characteristics. Obesity 31, 111–122 (2023).

Article  CAS  PubMed  Google Scholar 

Sattar, N., Deanfield, J. & Delles, C. Impact of intentional weight loss in cardiometabolic disease: what we know about timing of benefits on differing outcomes. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvac186 (2023).

Article  PubMed  Google Scholar 

Drucker, D. J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 24, 15–30 (2016).

Article  CAS  PubMed  Google Scholar 

Ussher, J. R. & Drucker, D. J. Cardiovascular actions of incretin-based therapies. Circ. Res. 114, 1788–1803 (2014).

Article  CAS  PubMed  Google Scholar 

Wallner, M. et al. Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium. J. Mol. Cell Cardiol. 89, 365–375 (2015).

Article  CAS  PubMed  Google Scholar 

Baggio, L. L. et al. GLP-1 receptor expression within the human heart. Endocrinology 159, 1570–1584 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ban, K. et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008).

Article  CAS  PubMed  Google Scholar 

McLean, B. A., Wong, C. K., Kabir, M. G. & Drucker, D. J. Glucagon-like peptide-1 receptor Tie2+ cells are essential for the cardioprotective actions of liraglutide in mice with experimental myocardial infarction. Mol. Metab. 66, 101641 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panjwani, N. et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE-/- mice. Endocrinology 154, 127–139 (2013).

Article  CAS  PubMed  Google Scholar 

Kim, M. et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat. Med. 19, 567–575 (2013).

Article  CAS  PubMed  Google Scholar 

Richards, P. et al. Identification and characterisation of glucagon-like peptide-1 receptor expressing cells using a new transgenic mouse model. Diabetes 63, 1224–1233 (2014).

Article  CAS  PubMed  Google Scholar 

Pyke, C. & Knudsen, L. B. The glucagon-like peptide-1 receptor — or not? Endocrinology 154, 4–8 (2013).

Article  CAS  PubMed  Google Scholar 

Moore-Morris, T. et al. Identification of potential pharmacological targets by analysis of the comprehensive G protein-coupled receptor repertoire in the four cardiac chambers. Mol. Pharmacol. 75, 1108–1116 (2009).

Article  CAS 

留言 (0)

沒有登入
gif