The role of hypoxia-inducible factor 1α in hepatic lipid metabolism

Hirode G, Saab S, Wong R (2020) Trends in the burden of chronic liver disease among hospitalized US adults. JAMA network open 3(4):e201997. https://doi.org/10.1001/jamanetworkopen.2020.1997

Younossi Z, Stepanova M, Younossi Y, Golabi P, Mishra A, Rafiq N, Henry L (2020) Epidemiology of chronic liver diseases in the USA in the past three decades. Gut 69(3):564–568. https://doi.org/10.1136/gutjnl-2019-318813

Article  PubMed  Google Scholar 

Younossi Z (2019) Non-alcoholic fatty liver disease - a global public health perspective. J Hepatol 70(3):531–544. https://doi.org/10.1016/j.jhep.2018.10.033

Article  PubMed  Google Scholar 

Xiao J, Wang F, Wong N, He J, Zhang R, Sun R, Xu Y, Liu Y, Li W, Koike K et al (2019) Global liver disease burdens and research trends: analysis from a Chinese perspective. J Hepatol 71(1):212–221. https://doi.org/10.1016/j.jhep.2019.03.004

Article  PubMed  Google Scholar 

Farrell A, Magliano D, Shaw J, Thompson A, Croagh C, Ryan M, Howell J (2022) A problem of proportions: estimates of metabolic associated fatty liver disease and liver fibrosis in Australian adults in the nationwide 2012 AusDiab Study. Sci Rep 12(1):1956. https://doi.org/10.1038/s41598-022-05168-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryu E, Xia H, Guo G, Zhang L (2022) Multivariable-adjusted trends in mortality due to alcoholic liver disease among adults in the United States, from 1999–2017. Am J Transl Res 14(2):1092–1099

PubMed  PubMed Central  Google Scholar 

Heeren J, Scheja L (2021) Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab 50:101238. https://doi.org/10.1016/j.molmet.2021.101238

Eslam M, Sanyal A, George J (2020) MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158(7):1999-2014.e1991. https://doi.org/10.1053/j.gastro.2019.11.312

Article  CAS  PubMed  Google Scholar 

Aniemeka C, Pillai A (2022) HCC mortality trends-in with ALD (and NAFLD) and out with HCV. Dig Dis Sci. https://doi.org/10.1007/s10620-022-07434-7

Article  PubMed  Google Scholar 

Seo J, Jeong D, Park J, Lee K, Fukuda J, Chun Y (2020) Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells. Communi Biol 3(1):638. https://doi.org/10.1038/s42003-020-01367-5

Article  CAS  Google Scholar 

Huang Y, Lian W, Wang F, Wang P, Lin H, Tsai M, Yang Y (2022) HIF-1αMiR-29a curbs hepatocellular carcinoma incidence via targeting of HIF-1α and ANGPT2. Int J Mol Sci 23(3). https://doi.org/10.3390/ijms23031636

Gao X, Lin S, Ren F, Li J, Chen J, Yao C, Yang H, Jiang S, Yan G, Wang D et al (2016) Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun 7:11960. https://doi.org/10.1038/ncomms11960

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sundaram S, Halbower A, Pan Z, Robbins K, Capocelli K, Klawitter J, Shearn C, Sokol R (2016) Nocturnal hypoxia-induced oxidative stress promotes progression of pediatric non-alcoholic fatty liver disease. J Hepatol 65(3):560–569. https://doi.org/10.1016/j.jhep.2016.04.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

de la Rosa Rodriguez M, Deng L, Gemmink A, van Weeghel M, Aoun M, Warnecke C, Singh R, Borst J, Kersten S (2021) Hypoxia-inducible lipid droplet-associated induces DGAT1 and promotes lipid storage in hepatocytes. Mol Metab 47:101168. https://doi.org/10.1016/j.molmet.2021.101168

Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M et al (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56(4):901–911. https://doi.org/10.2337/db06-0911

Article  CAS  PubMed  Google Scholar 

Kondo K, Sugioka T, Tsukada K, Aizawa M, Takizawa M, Shimizu K, Morimoto M, Suematsu M, Goda N (2010) Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, improves hepatic microcirculatory patency and oxygen availability in a high-fat-diet-induced fatty liver in mice. Adv Exp Med Biol 662:77–82. https://doi.org/10.1007/978-1-4419-1241-1_10

Article  CAS  PubMed  Google Scholar 

Sun J, Zhao L, Wu H, Liu Q, Liao L, Luo J, Lian W, Cui C, Jin L, Ma J et al (2020) Acute hypoxia changes the mode of glucose and lipid utilization in the liver of the largemouth bass (Micropterus salmoides). Sci Total Environ 713:135157. https://doi.org/10.1016/j.scitotenv.2019.135157

Semenza G, Wang G (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12(12):5447–5454. https://doi.org/10.1128/mcb.12.12.5447-5454.1992

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Song J, Yang Y, Zhang Y, Wang H, Ma J (2015) HIF3A DNA methylation is associated with childhood obesity and ALT. PloS One 10(12):e0145944. https://doi.org/10.1371/journal.pone.0145944

Mandl M, Lieberum M, Depping R (2016) A HIF-1α-driven feed-forward loop augments HIF signalling in Hep3B cells by upregulation of ARNT. Cell Death Dis 7(6):e2284. https://doi.org/10.1038/cddis.2016.187

Semenza G (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47–71. https://doi.org/10.1146/annurev-pathol-012513-104720

Article  CAS  PubMed  Google Scholar 

Jaakkola P, Mole D, Tian Y, Wilson M, Gielbert J, Gaskell S, von Kriegsheim A, Hebestreit H, Mukherji M, Schofield C et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science (New York, NY) 292(5516):468–472. https://doi.org/10.1126/science.1059796

Article  CAS  Google Scholar 

Zhang N, Fu Z, Linke S, Chicher J, Gorman J, Visk D, Haddad G, Poellinger L, Peet D, Powell F et al (2010) The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metab 11(5):364–378. https://doi.org/10.1016/j.cmet.2010.03.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mooli R, Rodriguez J, Takahashi S, Solanki S, Gonzalez F, Ramakrishnan S, Shah Y (2021) Hypoxia via ERK signaling inhibits hepatic PPARα to promote fatty liver. Cell Mol Gastroenterol Hepatol 12(2):585–597. https://doi.org/10.1016/j.jcmgh.2021.03.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rey E, Meléndez-Rodríguez F, Marañón P, Gil-Valle M, Carrasco A, Torres-Capelli M, Chávez S, Del Pozo-Maroto E, Rodríguez de Cía J, Aragonés J et al (2020) Hypoxia-inducible factor 2α drives hepatosteatosis through the fatty acid translocase CD36. Liver Int : Official J Int Assoc Study Liver 40(10):2553–2567. https://doi.org/10.1111/liv.14519

Article  CAS  Google Scholar 

Holzner L, Murray A (2021) Hypoxia-inducible factors as key players in the pathogenesis of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Frontiers in medicine 8:753268. https://doi.org/10.3389/fmed.2021.753268

Gonzalez F, Xie C, Jiang C (2018) The role of hypoxia-inducible factors in metabolic diseases. Nat Rev Endocrinol 15(1):21–32. https://doi.org/10.1038/s41574-018-0096-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomas A, Belaidi E, Aron-Wisnewsky J, van der Zon G, Levy P, Clement K, Pepin J, Godin-Ribuot D, Guigas B (2016) Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Sci Rep 6:24618. https://doi.org/10.1038/srep24618

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donnelly K, Smith C, Schwarzenberg S, Jessurun J, Boldt M, Parks E (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Investig 115(5):1343–1351. https://doi.org/10.1172/jci23621

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Liu H, Chang Z, Huang T, Lee T (2021) Losartan prevents hepatic steatosis and macrophage polarization by inhibiting HIF-1α in a murine model of NAFLD. Int J Mol Sci 22(15). https://doi.org/10.3390/ijms22157841

Jin H, Lian N, Bian M, Zhang C, Chen X, Shao J, Wu L, Chen A, Guo Q, Zhang F et al (2018) Oroxylin A prevents alcohol-induced hepatic steatosis through inhibition of hypoxia inducible factor 1alpha. Chem Biol Interact 285:14–20. https://doi.org/10.1016/j.cbi.2018.02.025

Article  CAS  PubMed  Google Scholar 

Yan Y, Wu X, Wang P, Zhang S, Sun L, Zhao Y, Zeng G, Liu B, Xu G, Liu H et al (2020) Homocysteine promotes hepatic steatosis by activating the adipocyte lipolysis in a HIF1α-ERO1α-dependent oxidative stress manner. Redox Biol 37:101742. https://doi.org/10.1016/j.redox.2020.101742

Wang Z, Li B, Jiang H, Ma Y, Bao Y, Zhu X, Xia H, Jin Y (2021) IL-8 exacerbates alcohol-induced fatty liver disease via the Akt/HIF-1α pathway in human IL-8-expressing mice. Cytokine 138:155402. https://doi.org/10.1016/j.cyto.2020.155402

Prasun P, Ginevic I, Oishi K (2021) Mitochondrial dysfunction in nonalcoholic fatty liver disease and alcohol related liver disease. Transl Gastroenterol Hepatol 6:4. https://doi.org/10.21037/tgh-20-125

Xu L, Huang Z, Lo T, Lee J, Yang R, Yan X, Ye D, Xu A, Wong C (2022) Hepatic PRMT1 ameliorates diet-induced hepatic steatosis via induction of PGC1α. Theranostics 12(6):2502–2518. https://doi.org/10.7150/thno.63824

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goetzman E, Bharathi S, Zhang Y, Zhao X, Dobrowolski S, Peasley K, Sims-Lucas S, Monga S (2020) Impaired mitochondrial medium-chain fatty acid oxidation drives periportal macrovesicular steatosis in sirtuin-5 knockout mice. Sci Rep 10(1):18367. https://doi.org/10.1038/s41598-020-75615-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Ma Z, Zhao C, Wang Y, Wu G, Xiao J, McClain C, Li X, Feng W (2014) HIF-1α and HIF-2α are critically involved in hypoxia-induced lipid accumulation in hepatocytes through reducing PGC-1α-mediated fatty acid β-oxidation. Toxicol Lett 226(2):117–123. https://doi.org/10.1016/j.toxlet.2014.01.033

Article  CAS  PubMed  Google Scholar 

Wei S, Liu S, Su X, Wang W, Li F, Deng J, Lyu Y, Geng B, Xu G (2018) Spontaneous development of hepatosteatosis in perilipin-1 null mice with adipose tissue dysfunction. Biochimica et biophysica acta. Mol Cell Biol Lipids 1863(2):212–218. https://doi.org/10.1016/j.bbalip.2017.11.007

Dou X, Xia Y, Chen J, Qian Y, Li S, Zhang X, Song Z (2014) Rectification of impaired adipose tissue methylation status and lipolytic response contributes to hepatoprotective effect of betaine in a mouse model of alcoholic liver disease. Br J Pharmacol 171(17):4073–4086. https://doi.org/10.1111/bph.12765

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng J, Liu S, Zou L, Xu C, Geng B, Xu G (2012) Lipolysis response to endoplasmic reticulum stress in adipose cells. J Biol Chem 287(9):6240–6249. https://doi.org/10.1074/jbc.M111.299115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arner E, Westermark P, Spalding K, Britton T, Rydén M, Frisén J, Bernard S, Arner P (2010) Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59(1):105–109. https://doi.org/10.2337/db09-0942

Article  CAS  PubMed  Google Scholar 

Sun K, Halberg N, Khan M, Magalang U, Scherer P (2013) Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol Cell Biol 33(5):904–917. https://doi.org/10.1128/mcb.00951-12

Article  CAS  PubMed  PubMed Central  Google Scho

留言 (0)

沒有登入
gif