Multiple exposures to heavy metals and changes in steroid hormones production in 4-year-old children

Ackah M. Informal E-waste recycling in developing countries: Review of metal(loid)s pollution, environmental impacts and transport pathways. Environ Sci Pollut Res. 2017;24:24092–101.

Article  Google Scholar 

Baldé CP, Forti V, Gray V, Kuehr R, Stegmann P. The Global E-waste Monitor – 2017, United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna. https://www.itu.int/dms_pub/itu-d/opb/gen/D-GEN-E_WASTE.01-2017-PDF-E.pdf.

Forti V, Baldé CP, Kuehr R, Bel G. The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam. https://www.itu.int/en/ITU-D/Environment/Pages/Spotlight/Global-Ewaste-Monitor-2020.aspx.

Damrongsiri S, Vassanadumrongdee S, Tanwattana P. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand. Environ Sci Pollut Res. 2016;23:17026–34.

Article  CAS  Google Scholar 

Ashrap P, Sánchez BN, Téllez-Rojo MM, Basu N, Tamayo-Ortiz M, Peterson KE, et al. In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression among girls in Mexico City. Environ Res. 2019;177:108630.

Article  CAS  PubMed Central  Google Scholar 

Ren J, Cui J, Chen Q, Zhou N, Zhou Z, Zhang GH, et al. Low-level lead exposure is associated with aberrant sperm quality and reproductive hormone levels in Chinese male individuals: Results from the MARHCS study low-level lead exposure is associated with aberrant sperm quality. Chemosphere. 2020;224:125402.

Article  Google Scholar 

Gil F, Hernandez AF. Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samples. Food Chem Toxicol. 2015;80:287–97.

Article  CAS  Google Scholar 

Park Y, Lee A, Choi K, Kim HJ, Lee JJ, Choi G, et al. Exposure to lead and mercury through breastfeeding during the first month of life: a CHECK cohort study. Sci Total Environ. 2018;612:876–83.

Article  CAS  Google Scholar 

Alabi OA, Adeoluwa YM, Huo X, Xu X, Bakare AA. Environmental contamination and public health effects of electronic waste: an overview. J Environ Health Sci Eng. 2021;19:1209–27.

Article  CAS  PubMed Central  Google Scholar 

LaKind JS, Wilkins AA, Berlin CM. Environmental chemicals in human milk: a review of levels, infant exposures and health, and guidance for future research. Toxicol Appl Pharm. 2004;198:184–208.

Article  CAS  Google Scholar 

Landrigan PJ, Sonawane B, Mattison D, E McCally M, Garg A. Chemical contaminants in breast milk and their impacts on children’s health: an overview. Environ Health Perspect. 2002;110:313–5.

Article  Google Scholar 

Lebbie TS, Moyebi OD, Asante KA, Fobil J, Brune-Drisse MN, Suk WA, et al. E-waste in Africa: a serious threat to the health of children. Int J Environ Res Public Health. 2021;18:8488.

Article  CAS  PubMed Central  Google Scholar 

Schoeman K, Bend JR, Hill J, Nash K, Koren G. Defining a lowest observable adverse effect hair concentrations of mercury for neurodevelopmental effects of prenatal methylmercury exposure through maternal fish consumption: a systematic review. Ther Drug Monit. 2009;31:670–82.

Article  CAS  Google Scholar 

Dórea JG. Exposure to environmental neurotoxic substances and neurodevelopment in children from Latin America and the Caribbean. Environ Res. 2021;192:110199.

Article  Google Scholar 

Dórea JG. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environ Res. 2019;177:108641.

Article  Google Scholar 

Chan JKY, Xing GH, Xu Y, Liang Y, Chen LX, Wu SC, et al. Body loadings and health risk assessment of polychlorinated dibenzo-p-dioxins and dibenzofurans at an intensive electronic waste recycling site in China. Environ Sci Technol. 2007;41:7668–74.

Article  CAS  Google Scholar 

Luo T, Hang JG, Nakayama SF, Jung CR, Ma CC, Kido T, et al. Dioxins in breast milk of Chinese mothers: a survey 40 years after the e-waste recycling activities. Sci Total Environ. 2021;758:143627.

Article  CAS  Google Scholar 

Wang Z, Hang JG, Feng H, Shi LL, Dong JJ, Shen B, et al. Effects of perinatal dioxin exposure on development of children: a three-year follow-up study of China cohort. Environ Sci Pollut Res. 2019;26:20780–6.

Article  CAS  Google Scholar 

Søeborg T, Frederiksen H, Mouritsen A, Johannsen TH, Main KM, Jørgensen N, et al. Sex, age, pubertal development and use of oral contraceptives in relation to serum concentrations of DHEA, DHEAS, 17α-hydroxyprogesterone, Δ4-androstenedione, testosterone and their ratios in children, adolescents and young adults. Clin Chim Acta. 2014;437:6–13.

Article  Google Scholar 

Yamashita K, Miyashiro Y, Maekubo H, Okuyama M, Honma S, Takahashi M, et al. Development of highly sensitive quantification method for testosterone and dihydrotestosterone in human serum and prostate tissue by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids. 2009;74:920–6.

Article  CAS  Google Scholar 

Dong JJ, Ruan MC, Hang JG, Nakayama SF, Jung CR, Kido T, et al. The relationship between perinatal exposure to dioxins and serum steroid hormone levels in preschool-aged children at an e-waste region in China. Int J Hyg Environ Health. 2020;229:113580.

Article  CAS  Google Scholar 

Freire C, Amaya E, Gil F, Fernández MF, Murcia M, Llop S, et al. Prenatal co-exposure to neurotoxic metals and neurodevelopment in preschool children: The Environment and Childhood (INMA) Project. Sci Total Environ. 2018;621:340–51.

Article  CAS  Google Scholar 

Guo J, Wu C, Zhang J, Qi X, Lv S, Jiang S, et al. Prenatal exposure to mixture of heavy metals, pesticides and phenols and IQ in children at 7 years of age: The SMBCS study. Environ Int. 2020;139:105692.

Article  CAS  Google Scholar 

Bob JF, Valeri L, Henn BC, Christiani DC, Wright RO, Mazumdar M, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2015;16:493–508.

Article  Google Scholar 

Bobb JF. Package ‘bkmr’: Bayesian Kernel Machine Regression. https://cran.r-project.org/web/packages/bkmr/bkmr.pdf 2022. (accessed on 23 Oct 2022).

Rosenfield RL. Normal and premature adrenarche. Endocr Rev. 2021;42:783–814.

Article  PubMed Central  Google Scholar 

Schnakenburg KV, Bidlingmaier F, Knorr D. 17-hydroxyprogesterone, androstenedione, and testosterone in normal children and in prepubertal patients with congenital adrenal hyperplasia. Eur J Pediatr. 1980;133:259–67.

Article  Google Scholar 

Sulcová J, Hill M, Hampl R, Stárka L. Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulphate in normal subjects. J Endocrinol. 1997;154:57–62.

Article  Google Scholar 

Kim JH, Lee YA, Lim YH, Lee K, Kim BN, Kim JI, et al. Changes in adrenal androgens and steroidogenic enzyme activities from ages 2, 4, to 6 years: a prospective cohort study. J Clin Endocrinol Metab. 2020;105:dgaa498.

Article  Google Scholar 

Kumar U, Gaikwad V, Mayyas M, Bucknall M, Sahajwalla V. Application of high-resolution NMR and GC–MS to study hydrocarbon oils derived from noncatalytic thermal transformation of e-waste plastics. ACS Omega. 2018;3:9282–9.

Article  CAS  PubMed Central  Google Scholar 

Fu J, Zhou Q, Liu J, Liu W, Wang T, Zhang Q, et al. High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere. 2008;71:1269–75.

Article  CAS  Google Scholar 

Gu W, Bai J, Yao H, Zhao J, Zhuang X, Huang Q, et al. Heavy metals in soil at a waste electrical and electronic equipment processing area in China. Waste Manag Res. 2017;35:1183–91.

Article  CAS  Google Scholar 

Li X, Dong S, Su X. Copper and other heavy metals in grapes: a pilot study tracing influential factors and evaluating potential risks in China. Sci Rep. 2018;8:17407.

Article  PubMed Central  Google Scholar 

Yin H, Ma J, Li Z, Li Y, Meng T, Tang Z. Polybrominated diphenyl ethers and heavy metals in a regulated E-waste recycling site, eastern china: implications for risk management. Molecules. 2021;26:2169.

Article  CAS  PubMed Central  Google Scholar 

Agusa T, Kunito T, Iwata H, Monirith I, Chamnan C, Tana TS, et al. Mercury in hair and blood from residents of Phnom Penh (Cambodia) and possible effect on serum hormone levels. Chemosphere. 2007;68:590–6.

Article  CAS  Google Scholar 

Baraquoni NA, Qouta SR, Vänskä M, Diab SY, Punamäki RL, Manduca P. It takes time to unravel the ecology of war in Gaza, Palestine: long-term changes in maternal, newborn and toddlers’ heavy metal loads, and infant and toddler developmental milestones in the aftermath of the 2014 military attacks. Int J Environ Res Public Health. 2020;17:6698.

Article  PubMed Central  Google Scholar 

Gerhard I, Waibel S, Daniel V, Runnebaum B. Impact of heavy metals on hormonal and immunological factors in women with repeated miscarriages. Hum Reprod Update. 1998;4:301–9.

Article  CAS  Google Scholar 

Iavicoli I, Fontana L, Bergamaschi A. The effects of metals as endocrine disruptors. J Toxicol Environ Heal B. 2009;12:206–23.

Article  CAS  Google Scholar 

Li CJ, Yeh CY, Chen RY, Tzeng CR, Han BC, Chien LC. Biomonitoring of blood heavy metals and reproductive hormone level related to low semen quality. J Hazard Mater. 2015;300:815–22.

Article  CAS  Google Scholar 

Waring RH, Harris RM. Endocrine disrupters: a human risk? Mol Cell Endocrinol. 2005;244:2–9.

Article  CAS  Google Scholar 

Ji X, Li Z, Chen H, Li J, Tian H, Li Z, et al. Cytotoxic mechanism related to dihydrolipoamide dehydrogenase in Leydig cells exposed to heavy metals. Toxicology. 2015;334:22–32.

Article  CAS  Google Scholar 

Kampalath RA, Jay JA. Sources of mercury exposure to children in low- and middle-income countries. J Health Pollut. 2015;5:33–51.

Article  PubMed Central  Google Scholar 

Louis GB, Faustman E, Hass U, Kavlock R, Sheldon L. Principles for evaluating health risks in children associated with exposure to chemicals. EHC. 2006;237:329.

Google Scholar 

Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108:511–33.

PubMed Central  Google

留言 (0)

沒有登入
gif