Tumors evade immune cytotoxicity by altering the surface topology of NK cells

Baumeister, S. H., Freeman, G. J., Dranoff, G. & Sharpe, A. H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34, 539–573 (2016).

Article  CAS  PubMed  Google Scholar 

Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

Article  CAS  PubMed  Google Scholar 

Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S. & Honjo, T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat. Immunol. 14, 1212–1218 (2013).

Article  CAS  PubMed  Google Scholar 

Rizvi, N. A. et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 16, 257–265 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

Article  PubMed  Google Scholar 

André, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e1713 (2018).

Article  PubMed  PubMed Central  Google Scholar 

McWilliams, E. M. et al. Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic leukemia. Oncoimmunology 5, e1226720 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Kamiya, T., Seow, S. V., Wong, D., Robinson, M. & Campana, D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Invest. 129, 2094–2106 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou, W. Mechanistic insights into cancer immunity and immunotherapy. Cell. Mol. Immunol. 15, 419–420 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barry, K. C. et al. A natural killer–dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, X. et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat. Immunol. 20, 1656–1667 (2019).

Article  CAS  PubMed  Google Scholar 

Ghesquière, B., Wong, B. W., Kuchnio, A. & Carmeliet, P. Metabolism of stromal and immune cells in health and disease. Nature 511, 167–176 (2014).

Article  PubMed  Google Scholar 

Morvan, M. G. & Lanier, L. L. NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer 16, 7–19 (2016).

Article  CAS  PubMed  Google Scholar 

O’Brien, K. L. & Finlay, D. K. Immunometabolism and natural killer cell responses. Nat. Rev. Immunol. 19, 282–290 (2019).

Article  PubMed  Google Scholar 

Orange, J. S. Formation and function of the lytic NK-cell immunological synapse. Nat. Rev. Immunol. 8, 713–725 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis, D. M. et al. The human natural killer cell immune synapse. Proc. Natl Acad. Sci. USA 96, 15062–15067 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams, G. S. et al. Membranous structures transfer cell surface proteins across NK cell immune synapses. Traffic 8, 1190–1204 (2007).

Article  CAS  PubMed  Google Scholar 

McCann, F. E. et al. The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. J. Immunol. 170, 2862–2870 (2003).

Article  CAS  PubMed  Google Scholar 

Mattaini, K. R., Sullivan, M. R. & Vander Heiden, M. G. The importance of serine metabolism in cancer. J. Cell Biol. 214, 249–257 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herz, J. et al. Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes. Nat. Immunol. 10, 761–768 (2009).

Article  CAS  PubMed  Google Scholar 

Jung, Y. et al. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc. Natl Acad. Sci. USA 113, E5916–E5924 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai, E. et al. Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. Science 356, eaal3118 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Yi, J. C. & Samelson, L. E. Microvilli set the stage for T-cell activation. Proc. Natl Acad. Sci. USA 113, 11061–11062 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, H.-R. et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat. Commun. 9, 3630 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Majstoravich, S. et al. Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood 104, 1396–1403 (2004).

Article  CAS  PubMed  Google Scholar 

Pettmann, J., Santos, A. M., Dushek, O. & Davis, S. J. Membrane ultrastructure and T cell activation. Front. Immunol. 9, 2152 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Razvag, Y., Neve-Oz, Y., Sajman, J., Reches, M. & Sherman, E. Nanoscale kinetic segregation of TCR and CD45 in engaged microvilli facilitates early T cell activation. Nat. Commun. 9, 732 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Fisher, P. J., Bulur, P. A., Vuk-Pavlovic, S., Prendergast, F. G. & Dietz, A. B. Dendritic cell microvilli: a novel membrane structure associated with the multifocal synapse and T-cell clustering. Blood 112, 5037–5045 (2008).

Article  CAS  PubMed  Google Scholar 

Sivori, S. et al. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell. Mol. Immunol. 16, 430–441 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Habif, G., Crinier, A., André, P., Vivier, E. & Narni-Mancinelli, E. Targeting natural killer cells in solid tumors. Cell. Mol. Immunol. 16, 415–422 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumari, S. et al. Actin foci facilitate activation of the phospholipase C-γ in primary T lymphocytes via the WASP pathway. eLife 4, e04953 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Zhu, H. et al. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc. Natl Acad. Sci. USA 114, 2586–2591 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, H. et al. Moderate UV exposure enhances learning and memory by promoting a novel glutamate biosynthetic pathway in the brain. Cell 173, 1716–1727.e1717 (2018).

Article  CAS  PubMed  Google Scholar 

Zhuang,

留言 (0)

沒有登入
gif