2,4-Dipropylphloroglucinol inhibits the growth of human lung and colorectal cancer cells through induction of apoptosis

Qureshi KA, Bholay AD, Rai PK, Mohammed HA. Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target anti-microbial validations of actinomycin X2 and actinomycin D produced by novel Streptomyces smyrnaeus UKAQ_23. Sci Rep. 2021;11:1–21.

Article  CAS  Google Scholar 

Bender CL, Loper JE. Polyketide production by plantassociated Pseudomonads. Annu Rev Phytopathol. 1999;37:175–96.

Article  CAS  PubMed  Google Scholar 

Bangera MG, Thomashow LS. Identification and Characterization of a Gene Cluster for Synthesis of the Polyketide Antibiotic 2,4-Diacetylphloroglucinol from Pseudomonas fluorescens Q2–87. J Bacteriol. 1999;181:3155–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isnansetyo A, Cui L, Hiramatsu K, Kamei Y. Antibacterial activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2003;22:545–7.

Article  CAS  PubMed  Google Scholar 

Kamei Y, Isnansetyo A. Lysis of methicillin-resistant Staphylococcus aureus by 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga. Int J Antimicrob Agents. 2003;21:71–4.

Article  CAS  PubMed  Google Scholar 

De Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM. Effect of 2,4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology. 2003;93:966–75.

Article  PubMed  Google Scholar 

Islam MT, Fukushi Y. Growth inhibition and excessive branching in Aphanomyces cochlioides induced by 2,4-diacetylphloroglucinol is linked to disruption of filamentous actin cytoskeleton in the hyphae. World J Microbiol Biotechnol. 2010;26:1163–70.

Article  CAS  PubMed  Google Scholar 

Gleeson O, O’Gara F, Morrissey JP. The Pseudomonas fluorescens secondary metabolite 2,4 diacetylphloroglucinol impairs mitochondrial function in Saccharomyces cerevisiae. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 2010;97:261–73.

Article  CAS  Google Scholar 

Islam MT, von Tiedemann A. 2,4-Diacetylphloroglucinol suppresses zoosporogenesis and impairs motility of Peronosporomycete zoospores. World J Microbiol Biotechnol. 2011;27:2071–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jousset A, Lara E, Wall LG, Valverde C. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol. 2006;72:7083–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veena VK, Popavath RN, Kennedy K, Sakthivel N. In vitro antiproliferative, pro-apoptotic, antimetastatic and anti-inflammatory potential of 2,4-diacteylphloroglucinol (DAPG) by Pseudomonas aeruginosa strain FP10. Apoptosis. 2015;20:1281–95.

Article  CAS  PubMed  Google Scholar 

Kabir SR, Dai Z, Nurujjaman M, Cui X, Asaduzzaman AKM, Sun B, et al. Biogenic silver/silver chloride nanoparticles inhibit human glioblastoma stem cells growth in vitro and Ehrlich ascites carcinoma cell growth in vivo. J Cell Mol Med. 2020;24:13223–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kabir SR, Asaduzzaman A, Amin R, Haque AT, Ghose R, Rahman MM, et al. Zizyphus mauritiana fruit extract-mediated synthesized silver/silver chloride nanoparticles retain antimicrobial activity and induce apoptosis in MCF—7 cells through the Fas pathway. ACS Omega. 2020;5:20599–608.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kabir SR, Islam J, Ahamed MS, Alam MT. Asparagus racemosus and Geodorum densiflorum lectins induce apoptosis in cancer cells by altering proteins and genes expression. Int J Biol Macromol. 2021;191:646–56.

Article  CAS  PubMed  Google Scholar 

Kabir SR, Islam F, Asaduzzaman AKM. Biogenic silver/silver chloride nanoparticles inhibit human cancer cells proliferation in vitro and Ehrlich ascites carcinoma cells growth in vivo. Sci Rep. 2022;12:1–14.

Article  Google Scholar 

Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, et al. The protein data bank. Acta Acta Crystallogr D Biol Crystallogr. 2002;58:899–907.

Article  PubMed  Google Scholar 

Kim S, Chen J, Cheng T, Gindulyte A, Jia He SH, Li Q, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019;47:D1102–9.

Article  PubMed  Google Scholar 

Visualizer DS. v4. 0.100. 13345. Accelrys Software Inc. 2005.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

Article  CAS  PubMed  Google Scholar 

Dallakyan S, Olson AJ. Small molecule library screening by docking with PyRx. Artic Methods Mol Biol. 2015;1263:243–50.

Article  CAS  Google Scholar 

Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

WL D. PyMOL. DeLano Scientific, San Carlos. ci.nii.ac.jp. 2002;700.

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–8.

Article  CAS  PubMed  Google Scholar 

Calvert PM, Frucht H. The genetics of colorectal cancer. Ann Intern Med. 2002;137:603–12.

Article  CAS  PubMed  Google Scholar 

Mohammed HA, Almahmoud SA, Khan FA, Emwas A, Jaremko M, Almulhim F, et al. Comparative anticancer potentials of taxifolin and quercetin methylated derivatives against HCT-116 cell lines: Effects of O—methylation on taxifolin and quercetin as preliminary natural leads. ACS Omega. 2022;7:46629–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kabir SR, Islam T. Antimycin A induced apoptosis in HCT—116 colorectal cancer cells through the up-and downregulation of multiple signaling pathways. Med Oncol. 2023;40:1–5.

Google Scholar 

Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S. STAT3 and apoptosis challenges in cancer. Int J Biol Macromol. 2018;117:993–1001.

Article  CAS  PubMed  Google Scholar 

Kabir KMA, Amin R, Hasan I, Asaduzzaman A, Ahsanul Kabir K, Khatun H, et al. Geodorum densiflorum rhizome lectin inhibits Ehrlich ascites carcinoma cell growth by inducing apoptosis through the regulation of BAX, p53 and NF-κB genes expression. Int J Biol Macromol. 2019;125:92–8.

Article  PubMed  Google Scholar 

Islam F, Gopalan V, Lam AKY, Kabir SR. Pea lectin inhibits cell growth by inducing apoptosis in SW480 and SW48 cell lines. Int J Biol Macromol. 2018;117:1050–7.

Article  CAS  PubMed  Google Scholar 

Islam F, Gopalan V, Lam AKY, Rashel S. International Journal of Biological Macromolecules Kaempferia rotunda tuberous rhizome lectin induces apoptosis and growth inhibition of colon cancer cells in vitro. Int J Biol Macromol. 2019;141:775–82.

Article  CAS  PubMed  Google Scholar 

Flores-Hernández E, Velázquez DM, Castañeda-Patlán MC, Fuentes-García G, Fonseca-Camarillo G, Yamamoto-Furusho JK, et al. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell Signal. 2020;72:109636.

Article  PubMed  Google Scholar 

He B, Reguart N, You L, Mazieres J, Xu Z, Lee AY, et al. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene. 2005;24:3054–8.

Article  CAS  PubMed  Google Scholar 

Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer Lancet. Lancet Oncol. 2005;6:322–7.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif