Phthalate mixtures and insulin resistance: an item response theory approach to quantify exposure burden to phthalate mixtures

Ruiz D, Becerra M, Jagai JS, Ard K, Sargis RM. Disparities in environmental exposures to endocrine-disrupting chemicals and diabetes risk in vulnerable populations. Diabetes Care. 2018;41:193–205.

Article  CAS  PubMed  Google Scholar 

Engelgau MM, Geiss LS, Saaddine JB, Boyle JP, Benjamin SM, Gregg EW, et al. The evolving diabetes burden in the United States. Ann Intern Med. 2004;140:945–50.

Article  PubMed  Google Scholar 

Narayan KM, Boyle JP, Thompson TJ, Gregg EW, Williamson DF. Effect of BMI on lifetime risk for diabetes in the U.S. Diabetes Care. 2007;30:1562–6.

Article  CAS  PubMed  Google Scholar 

Ruderman N, Chisholm D, Pi-Sunyer X, Schneider S. The metabolically obese, normal-weight individual revisited. Diabetes. 1998;47:699–713.

Article  CAS  PubMed  Google Scholar 

Neel BA, Sargis RM. The paradox of progress: environmental disruption of metabolism and the diabetes epidemic. Diabetes. 2011;60:1838–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woodruff T, Zota A, Schwartz J. Environmental chemicals in pregnant women in the United States: Nhanes 2003-2004. Environ Health Perspect. 2011;119:878–85.

Article  PubMed  PubMed Central  Google Scholar 

Heindel JJ, Vom Saal FS, Blumberg B, Bovolin P, Calamandrei G, Ceresini G, et al. Parma consensus statement on metabolic disruptors. Environ Health. 2015;14:54.

Article  PubMed  PubMed Central  Google Scholar 

Veiga-Lopez A, Pu Y, Gingrich J, Padmanabhan V. Obesogenic endocrine disrupting chemicals: identifying knowledge gaps. Trends Endocrinol Metab. 2018;29:607–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu R, Zheng Z, Du J, Christoffel KK, Liu X. Racial disparity in the associations of cotinine with insulin secretion: data from the National Health and Nutrition Examination Survey, 2007-2012. PLoS One. 2016;11:e0167260.

Article  PubMed  PubMed Central  Google Scholar 

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

Article  CAS  PubMed  Google Scholar 

Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487–95.

Article  PubMed  Google Scholar 

Centers for Disease Control and Prevention, US Department of Health and Human Services. National diabetes statistics report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2020.

Gao H, Chen D, Zang M. Association between phthalate exposure and insulin resistance: a systematic review and meta-analysis update. Environ Sci Pollut Res Int. 2021;28:55967–80.

Article  CAS  PubMed  Google Scholar 

Huang T, Saxena AR, Isganaitis E, James-Todd T. Gender and racial/ethnic differences in the associations of urinary phthalate metabolites with markers of diabetes risk: National Health and Nutrition Examination Survey 2001-2008. Environ Health. 2014;13:6.

Article  PubMed  PubMed Central  Google Scholar 

Kim JH, Park HY, Bae S, Lim YH, Hong YC. Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly: a panel study. PLoS One. 2013;8:e71392.

Article  PubMed  PubMed Central  Google Scholar 

Shoshtari-Yeganeh B, Zarean M, Mansourian M, Riahi R, Poursafa P, Teiri H, et al. Systematic review and meta-analysis on the association between phthalates exposure and insulin resistance. Environ Sci Pollut Res Int. 2019;26:9435–42.

Article  CAS  PubMed  Google Scholar 

Stahlhut RW, van Wijngaarden E, Dye TD, Cook S, Swan SH. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. Males. Environ Health Perspect. 2007;115:876–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim SH, On JW, Pyo H, Ko KS, Won JC, Yang J, et al. Percentage fractions of urinary di(2-ethylhexyl) phthalate metabolites: association with obesity and insulin resistance in Korean girls. PLoS One. 2018;13:e0208081.

Article  PubMed  PubMed Central  Google Scholar 

Lee I, Kim S, Park S, Mok S, Jeong Y, Moon HB, et al. Association of urinary phthalate metabolites and phenolics with adipokines and insulin resistance related markers among women of reproductive age. Sci Total Environ. 2019;688:1319–26.

Article  CAS  PubMed  Google Scholar 

Lin CY, Hsieh CJ, Lo SC, Chen PC, Torng PL, Hu A, et al. Positive association between concentration of phthalate metabolites in urine and microparticles in adolescents and young adults. Environ Int. 2016;92-93:157–64.

Article  CAS  PubMed  Google Scholar 

Liu SH, Kuiper JR, Chen Y, Feuerstahler L, Teresi J, Buckley JP. Developing an exposure burden score for chemical mixtures using item response theory, with applications to PFAS mixtures. Environmental Health Perspectives. 2022;130. https://ehp.niehs.nih.gov/doi/10.1289/EHP10125.

Liu SH, Juster RP, Dams-O’Connor K, Spicer J. Allostatic load scoring using item response theory. Comprehensive Psychoneuroendocrinology. 2021;5:100025.

Chang CH, Reeve BB. Item response theory and its applications to patient-reported outcomes measurement. Eval Health Prof. 2005;28:264–82.

Article  PubMed  Google Scholar 

Curran PJ, Hussong AM, Cai L, Huang W, Chassin L, Sher KJ, et al. Pooling data from multiple longitudinal studies: the role of item response theory in integrative data analysis. Dev Psychol. 2008;44:365–80.

Article  PubMed  PubMed Central  Google Scholar 

Dorans NJ, Kulick E. Differential item functioning on the mini-mental state examination. An application of the Mantel-Haenszel and standardization procedures. Med Care. 2006;44:S107–114.

Article  PubMed  Google Scholar 

Houseman EA, Marsit C, Karagas M, Ryan LM. Penalized item response theory models: application to epigenetic alterations in bladder cancer. Biometrics. 2007;63:1269–77.

Article  PubMed  Google Scholar 

McHorney CA, Cohen AS. Equating health status measures with item response theory: illustrations with functional status items. Med Care. 2000;38:II43–59.

Article  CAS  PubMed  Google Scholar 

Orlando Edelen MO, Thissen D, Teresi JA, Kleinman M, Ocepek-Welikson K. Identification of differential item functioning using item response theory and the likelihood-based model comparison approach. Application to the Mini-Mental State Examination. Med Care. 2006;44:S134–142.

Article  PubMed  Google Scholar 

Perkins AJ, Stump TE, Monahan PO, McHorney CA. Assessment of differential item functioning for demographic comparisons in the MOS SF-36 health survey. Qual Life Res. 2006;15:331–48.

Article  PubMed  Google Scholar 

Teresi JA, Kleinman M, Ocepek-Welikson K. Modern psychometric methods for detection of differential item functioning: Application to cognitive assessment measures. Stat Med. 2000;19:1651–83.

Article  CAS  PubMed  Google Scholar 

Teresi JA, Ocepek-Welikson K, Kleinman M, Cook KF, Crane PK, Gibbons LE, et al. Evaluating measurement equivalence using the item response theory log-likelihood ratio (IRTLR) method to assess differential item functioning (DIF): applications (with illustrations) to measures of physical functioning ability and general distress. Qual Life Res. 2007;16:43–68.

Article  PubMed  Google Scholar 

Aune SE, Abal FJP, H FA. Application of the graded response model to a scale of empathic behavior. Int J Psychol Res. 2019;12:49–56.

Article  Google Scholar 

Thomas ML. Advances in applications of item response theory to clinical assessment. Psychol Assess. 2019;31:1442–55.

Article  PubMed  PubMed Central  Google Scholar 

Zipf G, Chiappa M, Porter KS, Ostchega Y, Lewis BG, Dostal J. National health and nutrition examination survey: plan and operations, 1999-2010. Vital- Health Stat. 2013;1:1–37.

Google Scholar 

Kurtoglu S, Hatipoglu N, Mazicioglu M, Kendirici M, Keskin M, Kondolot M. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J Clin Res Pediatr Endocrinol. 2010;2:100–6.

Article  PubMed  PubMed Central  Google Scholar 

Li MC, Minguez-Alarcon L, Bellavia A, Williams PL, James-Todd T, Hauser R, et al. Serum beta-carotene modifies the association between phthalate mixtures and insulin resistance: the National health and nutrition examination survey 2003-2006. Environ Res. 2019;178:108729.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuiper JR, O’Brien KM, Ferguson KK, Buckley JP. Urinary specific gravity measures in the U.S. Population: implications for the adjustment of non-persistent chemical urinary biomarker data. Environ Int. 2021;156:106656.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Brien KM, Upson K, Cook NR, Weinberg CR. Environmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect. 2016;124:220–7.

Article  PubMed  Google Scholar 

Martinez Steele E, Baraldi LG, Louzada ML, Moubarac JC, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open. 2016;6:e009892.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif