Thalidomide interaction with inflammation in idiopathic pulmonary fibrosis

Ackermann M, Kamp JC, Werlein C et al (2022) The fatal trajectory of pulmonary COVID-19 is driven by lobular ischemia and fibrotic remodelling. EBioMedicine 85:104296. https://doi.org/10.1016/j.ebiom.2022.104296

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ackermann M, Kim YO, Wagner WL et al (2017) Effects of nintedanib on the microvascular architecture in a lung fibrosis model. Angiogenesis 20:359–372. https://doi.org/10.1007/s10456-017-9543-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akdis M, Aab A, Altunbulakli C et al (2016) Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J Allergy Clin Immunol 138:984–1010. https://doi.org/10.1016/j.jaci.2016.06.033

Article  CAS  PubMed  Google Scholar 

Al-kuraishy HM, Batiha GE-S, Faidah H et al (2022) Pirfenidone and post-Covid-19 pulmonary fibrosis: invoked again for realistic goals. Inflammopharmacology 30:2017–2026. https://doi.org/10.1007/s10787-022-01027-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amare GG, Meharie BG, Belayneh YM (2021) A drug repositioning success: the repositioned therapeutic applications and mechanisms of action of thalidomide. J Oncol Pharm Pract 27:673–678. https://doi.org/10.1177/1078155220975825

Article  CAS  PubMed  Google Scholar 

Amirshahrokhi K (2013) Anti-inflammatory effect of thalidomide in paraquat-induced pulmonary injury in mice. Int Immunopharmacol 17:210–215. https://doi.org/10.1016/j.intimp.2013.06.005

Article  CAS  PubMed  Google Scholar 

Amirshahrokhi K, Khalili A-R (2015) Thalidomide ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in an experimental model. Inflammation 38:476–484. https://doi.org/10.1007/s10753-014-9953-7

Article  CAS  PubMed  Google Scholar 

Arai H, Furusu A, Nishino T et al (2011) Thalidomide prevents the progression of peritoneal fibrosis in mice. Acta Histochem Cytochem 44:51–60. https://doi.org/10.1267/ahc.10030

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asatsuma-Okumura T, Ando H, De Simone M et al (2019a) p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat Chem Biol 15:1077–1084. https://doi.org/10.1038/s41589-019-0366-7

Article  CAS  PubMed  Google Scholar 

Asatsuma-Okumura T, Ito T, Handa H (2019b) Molecular mechanisms of cereblon-based drugs. Pharmacol Ther 202:132–139. https://doi.org/10.1016/j.pharmthera.2019.06.004

Article  CAS  PubMed  Google Scholar 

Asatsuma-Okumura T, Ito T, Handa H (2020) Molecular mechanisms of the teratogenic effects of thalidomide. Pharmaceuticals 13:95. https://doi.org/10.3390/ph13050095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbarossa A, Iacopetta D, Sinicropi MS et al (2022) Recent advances in the development of thalidomide-related compounds as anticancer drugs. Curr Med Chem 29:19–40. https://doi.org/10.2174/0929867328666210623143526

Article  CAS  PubMed  Google Scholar 

Barratt S, Creamer A, Hayton C, Chaudhuri N (2018) Idiopathic pulmonary fibrosis (IPF): an overview. J Clin Med 7:201. https://doi.org/10.3390/jcm7080201

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behl T, Kaur I, Goel H, Kotwani A (2017) Significance of the antiangiogenic mechanisms of thalidomide in the therapy of diabetic retinopathy. Vascul Pharmacol 92:6–15. https://doi.org/10.1016/J.VPH.2015.07.003

Article  CAS  PubMed  Google Scholar 

Behr J, Nathan SD, Wuyts WA et al (2021) Efficacy and safety of sildenafil added to pirfenidone in patients with advanced idiopathic pulmonary fibrosis and risk of pulmonary hypertension: a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med 9:85–95. https://doi.org/10.1016/S2213-2600(20)30356-8

Article  CAS  PubMed  Google Scholar 

Bersani-Amado LE, Dantas JA, Damião MJ et al (2016) Involvement of cytokines in the modulation and progression of renal fibrosis induced by unilateral ureteral obstruction in C57BL/6 mice: effects of thalidomide and dexamethasone. Fundam Clin Pharmacol 30:35–46. https://doi.org/10.1111/fcp.12162

Article  CAS  PubMed  Google Scholar 

Bian C, Qin W-J, Zhang C-Y et al (2018) Thalidomide (THD) alleviates radiation induced lung fibrosis (RILF) via down-regulation of TGF-β/Smad3 signaling pathway in an Nrf2-dependent manner. Free Radic Biol Med 129:446–453. https://doi.org/10.1016/j.freeradbiomed.2018.10.423

Article  CAS  PubMed  Google Scholar 

Blaschke G, Kraft HP, Fickentscher K, Köhler F (1979) Chromatographic separation of racemic thalidomide and teratogenic activity of its enantiomers. Arzneimittel-Forschung/drug Res 29:1640–1642

CAS  Google Scholar 

Bobowski-Gerard M, Boulet C, Zummo FP et al (2022) Functional genomics uncovers the transcription factor BNC2 as required for myofibroblastic activation in fibrosis. Nat Commun 13:5324. https://doi.org/10.1038/s41467-022-33063-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brandenburg NA, Bwire R, Freeman J et al (2017) Effectiveness of risk evaluation and mitigation strategies (REMS) for lenalidomide and thalidomide: patient comprehension and knowledge retention. Drug Saf 40:333–341. https://doi.org/10.1007/s40264-016-0501-2

Article  PubMed  PubMed Central  Google Scholar 

Burman A, Tanjore H, Blackwell TS (2018) Endoplasmic reticulum stress in pulmonary fibrosis. Matrix Biol 68–69:355. https://doi.org/10.1016/J.MATBIO.2018.03.015

Article  PubMed  PubMed Central  Google Scholar 

Cameli P, Refini RM, Bergantini L et al (2020) Long-term follow-up of patients with idiopathic pulmonary fibrosis treated with pirfenidone or nintedanib: a real-life comparison study. Front Mol Biosci. https://doi.org/10.3389/fmolb.2020.581828

Article  PubMed  PubMed Central  Google Scholar 

Chang X-B, Keith Stewart A (2011) What is the functional role of the thalidomide binding protein cereblon? Int J Biochem Mol Biol 2:287–294

CAS  PubMed  PubMed Central  Google Scholar 

Chen C, Qi F, Shi K et al (2020) Thalidomide combined with low-dose short-term glucocorticoid in the treatment of critical Coronavirus Disease 2019. Clin Transl Med 10:e35. https://doi.org/10.1002/ctm2.35

Article  PubMed  PubMed Central  Google Scholar 

Chen H, Xu H, Luo L et al (2019a) Thalidomide prevented and ameliorated pathogenesis of Crohn’s disease in mice via regulation of inflammatory response and fibrosis. Front Pharmacol. https://doi.org/10.3389/fphar.2019.01486

Article  PubMed  PubMed Central  Google Scholar 

Chen L, Halai V, Leandru A, Wallis A (2019b) Interstitial lung disease: update on the role of computed tomography in the diagnosis of idiopathic pulmonary fibrosis. J Comput Assist Tomogr 43:898–905. https://doi.org/10.1097/RCT.0000000000000915

Article  PubMed  Google Scholar 

Chen Q, Wang Y, Sheng L, Huang Y (2022) Metformin suppresses proliferation and differentiation induced by BMP9 via AMPK signaling in human fetal lung fibroblast-1. Front Pharmacol. https://doi.org/10.3389/fphar.2022.984730

Article  PubMed  PubMed Central  Google Scholar 

Cheng D, Xu Q, Wang Y et al (2021) Metformin attenuates silica-induced pulmonary fibrosis via AMPK signaling. J Transl Med 19:1–18. https://doi.org/10.1186/S12967-021-03036-5/FIGURES/9

Article  Google Scholar 

Choe J-Y, Jung H-J, Park K-Y et al (2010) Anti-fibrotic effect of thalidomide through inhibiting TGF-β-induced ERK1/2 pathways in bleomycin-induced lung fibrosis in mice. Inflamm Res 59:177–188. https://doi.org/10.1007/s00011-009-0084-9

Article  CAS  PubMed  Google Scholar 

Choi SM, Jang AH, Kim H et al (2016) Metformin reduces bleomycin-induced pulmonary fibrosis in mice. J Korean Med Sci 31:1419–1425. https://doi.org/10.3346/JKMS.2016.31.9.1419

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi T-Y, Lee S-H, Kim Y-J et al (2018) Cereblon maintains synaptic and cognitive function by regulating BK channel. J Neurosci 38:3571–3583. https://doi.org/10.1523/JNEUROSCI.2081-17.2018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christe A, Peters AA, Drakopoulos D et al (2019) Computer-aided diagnosis of pulmonary fibrosis using deep learning and CT images. Invest Radiol 54:627–632. https://doi.org/10.1097/RLI.0000000000000574

Article  PubMed  PubMed Central  Google Scholar 

Cinausero M, Aprile G, Ermacora P et al (2017) New frontiers in the pathobiology and treatment of cancer regimen-related mucosal injury. Front Pharmacol. https://doi.org/10.3389/fphar.2017.00354

Article  PubMed  PubMed Central  Google Scholar 

Cooper CR, Poindexter C, Rohe B, Sikes RA (2010) Thalidomide and its analogues in prostate cancer therapy—a scientific update. Biochem (lond) 32:36–39. https://doi.org/10.1042/bio03205036

Article  CAS  Google Scholar 

D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci 91:4082–4085. https://doi.org/10.1073/pnas.91.9.4082

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif