Genetic architecture of a pollinator shift and its fate in secondary hybrid zones of two Petunia species

Nosil P. Ecological Speciation. Oxford: Oxford University Press; 2012.

Schluter D. The Ecology of Adaptive Radiation. Oxford: Oxford University Press; 2000.

Schluter D, Rieseberg LH. Three problems in the genetics of speciation by selection. Proc Natl Acad Sci U S A. 2022;119:e2122153119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griswold CK. Gene flow’s effect on the genetic architecture of a local adaptation and its consequences for QTL analyses. Heredity (Edinb). 2006;96:445–53.

Article  CAS  PubMed  Google Scholar 

Yeaman S, Whitlock MC. The genetic architecture of adaptation under migration–selection balance. Evolution (N Y). 2011;65:1897–911.

Google Scholar 

Flaxman SM, Wacholder AC, Feder JL, Nosil P. Theoretical models of the influence of genomic architecture on the dynamics of speciation. Mol Ecol. 2014;23:4074–88.

Article  PubMed  Google Scholar 

Lynch M, Walsh B. Genetics and Analysis of Quantitative Traits. 1st edition. Sunderland Massachusetts: Sinauer Sunderland; 1998.

Chevin L-M, Decorzent G, Lenormand T. Niche dimensionality and the genetics of ecological speciation. Evolution (N Y). 2014;68:1244–56.

Google Scholar 

Schneemann H, De Sanctis B, Roze D, Bierne N, Welch JJ. The geometry and genetics of hybridization. Evolution (N Y). 2020;74:2575–90.

CAS  Google Scholar 

Thompson KA, Urquhart-Cronish M, Whitney KD, Rieseberg LH, Schluter D. Patterns, Predictors, and Consequences of Dominance in Hybrids. Am Nat. 2021;197:E72-88.

Article  PubMed  Google Scholar 

Nosil P, Feder JL, Gompert Z. How many genetic changes create new species? Science. 2021;371:777–9.

Article  CAS  PubMed  Google Scholar 

Bomblies K, Peichel CL. Genetics of adaptation. Proc Natl Acad Sci U S A. 2022;119:e2122152119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, et al. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat. 2016;188:379–97.

Article  PubMed  PubMed Central  Google Scholar 

Wolf JBW, Ellegren H. Making sense of genomic islands of differentiation in light of speciation. Nat Rev Genet. 2017;18:87–100.

Article  CAS  PubMed  Google Scholar 

Weigand H, Leese F. Detecting signatures of positive selection in non-model species using genomic data. Zool J Linn Soc. 2018;184:528–83.

Article  Google Scholar 

Ramsey J, Bradshaw HD, Schemske DW. Components of reproductive isolation between the monkeyflowers Mimuluslewisii and M. cardinalis (phrymaceae). Evolution (N Y). 2003;57:1520–34.

Google Scholar 

Carrió E, Güemes J. The effectiveness of pre- and post-zygotic barriers in avoiding hybridization between two snapdragons (Antirrhinum L.: Plantaginaceae). Bot J Linn Soc. 2014;176:159–72.

Google Scholar 

Bradshaw HD, Wilbert SM, Otto KG, Schemske DW. Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature. 1995;376:762–5.

Article  CAS  Google Scholar 

Bradshaw HD, Schemske DW. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature. 2003;426:176–8.

Article  CAS  PubMed  Google Scholar 

Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst. 2004;35:375–403.

Article  Google Scholar 

Shang Y, Venail J, Mackay S, Bailey PC, Schwinn KE, Jameson PE, et al. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. New Phytol. 2011;189:602–15.

Article  CAS  PubMed  Google Scholar 

Orteu A, Jiggins CD. The genomics of coloration provides insights into adaptive evolution. Nat Rev Genet. 2020;21:461–75.

Article  CAS  PubMed  Google Scholar 

Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, et al. Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color. Plant Cell. 1999;11:1433–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoballah ME, Gübitz T, Stuurman J, Broger L, Barone M, Mandel T, et al. Single gene–mediated shift in pollinator attraction in Petunia. Plant Cell. 2007;19:779–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheehan H, Moser M, Klahre U, Esfeld K, Dell’Olivo A, Mandel T, et al. MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation. Nat Genet. 2016;48:159–66.

Article  CAS  PubMed  Google Scholar 

Esfeld K, Berardi AE, Moser M, Bossolini E, Freitas L, Kuhlemeier C. Pseudogenization and resurrection of a speciation gene. Curr Biol. 2018;28:3776-3786.e7.

Article  CAS  PubMed  Google Scholar 

Berardi AE, Esfeld K, Jäggi L, Mandel T, Cannarozzi GM, Kuhlemeier C. Complex evolution of novel red floral color in Petunia. Plant Cell. 2021;33:2273–95.

Article  PubMed  PubMed Central  Google Scholar 

Edwards MB, Choi GPT, Derieg NJ, Min Y, Diana AC, Hodges SA, et al. Genetic architecture of floral traits in bee- and hummingbird-pollinated sister species of Aquilegia (Columbine). Evolution (N Y). 2021;75:2197–216.

CAS  Google Scholar 

Chen K-Y, Cong B, Wing R, Vrebalov J, Tanksley SD. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science. 2007;318:643–5.

Article  CAS  PubMed  Google Scholar 

Fishman L, Kelly AJ, Willis JH. Minor quantitative trait loci underlie floral traits associated with mating system divergence in Mimulus. Evolution (N Y). 2002;56:2138–55.

Google Scholar 

Nakazato T, Rieseberg LH, Wood TE. The genetic basis of speciation in the Giliopsis lineage of Ipomopsis (Polemoniaceae). Heredity (Edinb). 2013;111:227–37.

Article  CAS  PubMed  Google Scholar 

Schielzeth H, Rios Villamil A, Burri R. Success and failure in replication of genotype–phenotype associations: How does replication help in understanding the genetic basis of phenotypic variation in outbred populations? Mol Ecol Resour. 2018;18:739–54.

Article  PubMed  Google Scholar 

Holland JB. Genetic architecture of complex traits in plants. Curr Opin Plant Biol. 2007;10:156–61.

Article  CAS  PubMed  Google Scholar 

Lowry DB, Hall MC, Salt DE, Willis JH. Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. New Phytol. 2009;183:776–88.

Article  PubMed  Google Scholar 

Roesti M. Varied genomic responses to maladaptive gene flow and their evidence. Genes (Basel). 2018;9:298.

Article  PubMed  Google Scholar 

Bernacchi D, Tanksley SD. An interspecific backcross of Lycopersicon esculentum × L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics. 1997;147:861–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noor MAF, Cunningham AL, Larkin JC. Consequences of recombination rate variation on quantitative trait locus mapping studies: simulations based on the Drosophila melanogaster genome. Genetics. 2001;159:581–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen K-Y, Tanksley SD. High-resolution mapping and functional analysis of se2.1: a major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics. 2004;168:1563–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, et al. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell. 2009;21:2194–202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansson B, Sigeman H, Stervander M, Tarka M, Ponnikas S, Strandh M, et al. Contrasting results from GWAS and QTL mapping on wing length in great reed warblers. Mol Ecol Resour. 2018;18:867–76.

Article  CAS  PubMed  Google Scholar 

Stehmann JR, Lorenz-Lemke AP, Freitas LB, Semir J. The genus Petunia. In: Petunia. New York, NY: Springer New York; 2009. p. 1–28.

Google Scholar 

Dell’Olivo A, Kuhlemeier C. Asymmetric effects of loss and gain of a floral trait on pollinator preference. Evolution (N Y). 2013;67:3023–31.

Google Scholar 

Hermann K, Klahre U, Moser M, Sheehan H, Mandel T, Kuhlemeier C. Tight genetic linkage of prezygotic barrier loci creates a multifunctional speciation island in Petunia. Curr Biol. 2013;23:873–7.

Article  CAS  PubMed  Google Scholar 

Lorenz-Lemke AP, Mäder G, Muschner VC, Stehmann JR, Bonatto SL, Salzano FM, et al. Diversity and natural hybridization in a highly endemic species of Petunia (Solanaceae): a molecular and ecological analysis. Mol Ecol. 2006;15:4487–97.

留言 (0)

沒有登入
gif