Cannabidiol Recovers Dopaminergic Neuronal Damage Induced by Reserpine or α-synuclein in Caenorhabditis elegans

Zuardi AW, Shirakawa I, Finkelfarb E, Karniol IG (1982) Action of cannabidiol on the anxiety and other effects produced by ∆9-THC in normal subjects. Psychopharmacology 76:245–250. https://doi.org/10.1007/BF00432554

Article  CAS  PubMed  Google Scholar 

Carlini EA, Cunha JM (1981) Hypnotic and antiepileptic effects of cannabidiol. J Clin Pharmacol 21:417–427. https://doi.org/10.1002/j.1552-4604.1981.tb02622.x

Article  CAS  Google Scholar 

Rajesh M, Mukhopadhyay P, Bátkai S et al (2010) Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol 56:2115–2125. https://doi.org/10.1016/j.jacc.2010.07.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peres FF, Lima AC, Hallak JE et al (2018) Cannabidiol as a promising strategy to treat and prevent movement disorders? Front Pharmacol 9:482. https://doi.org/10.3389/fphar.2018.00482

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barata L, Arruza L, Rodríguez MJ, Aleo E, Vierge E et al (2019) Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage. Neuropharmacology 146:1–11. https://doi.org/10.1016/j.neuropharm.2018.11.020

Article  CAS  PubMed  Google Scholar 

Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernández-Ruiz J (2005) Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol Dis 19:96–107. https://doi.org/10.1016/j.nbd.2004.11.009

Article  CAS  PubMed  Google Scholar 

Chagas MHN, Eckeli AL, Zuardi AW et al (2014) Cannabidiol can improve complex sleep-related behaviors associated with rapid eye movement sleep behavior disorder in parkinson’s disease patients: a case series. J Clin Pharm Ther 39:564–566. https://doi.org/10.1111/jcpt.12179

Article  CAS  PubMed  Google Scholar 

Dugger BN, Dickson DW (2017) Pathology of neurodegenerative Diseases. Cold Spring Harb Perspect Biol 9:a028035. https://doi.org/10.1101/cshperspect.a028035

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL et al (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581. https://doi.org/10.1038/s41582-019-0244-7

Article  PubMed  Google Scholar 

Pupyshev AB, Korolenko TA, Akopyan AA, Amstislavskaya TG, Tikhonova MA (2018) Suppression of autophagy in the brain of transgenic mice with overexpression of А53Т-mutant α-synuclein as an early event at synucleinopathy progression. Neurosci Lett 672:140–144. https://doi.org/10.1016/j.neulet.2017.12.001

Article  CAS  PubMed  Google Scholar 

Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047. https://doi.org/10.1126/science.276.5321.204

Article  CAS  PubMed  Google Scholar 

Braak H, Braak E, Yilmazer D, Schultz C, De Vos RA, Jansen EN (1995) Nigral and extranigral pathology in Parkinson’s disease. J Neural Transm 46:15–31

CAS  Google Scholar 

Dirkx MF, den Ouden HE, Aarts E, Timmer MH, Bloem BR, Toni I, Helmich RC (2017) Dopamine controls Parkinson’s tremor by inhibiting the cerebellar thalamus. Brain aww331. https://doi.org/10.1093/brain/aww331

Article  Google Scholar 

Kalyn M, Hua K, Mohd Noor S, Wong CED, Ekker M (2019) Comprehensive analysis of neurotoxin-induced ablation of dopaminergic neurons in zebrafish larvae. Biomedicines 8:1. https://doi.org/10.3390/biomedicines8010001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei H, Ren R, Sun Y, Zhang K, Zhao X, Ablat N, Pu X (2020) Neuroprotective effects of safflower flavonoid extract in 6-hydroxydopamine-induced model of Parkinson’s Disease may be related to its anti-inflammatory action. Molecules 25:5206. https://doi.org/10.3390/molecules25215206

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abílio VC, Silva RH, Carvalho RC, Grassl C et al (2004) Important role of striatal catalase in aging and reserpine-induced oral dyskinesia. Neuropharmacology 47:263–272. https://doi.org/10.1016/j.neuropharm.2004.04.003

Article  CAS  PubMed  Google Scholar 

Reckziegel P, Peroza LR, Schaffer LF et al (2013) Gallic acid decreases vacuous chewing movements induced by reserpine in rats. Pharmacol Biochem Behav 104:132–137. https://doi.org/10.1016/j.pbb.2013.01.001

Article  CAS  PubMed  Google Scholar 

Arnsten AF, Cai JX, Steere JC, Goldman-Rakic PS (1995) Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys. J Neurosci 15:3429–3439. https://doi.org/10.1523/JNEUROSCI.15-05-03429.1995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Duan M, Guan K, Zhou X, Zheng M, Shi X et al (2019) Developmental neurotoxicity of reserpine exposure in zebrafish larvae (Danio rerio). Comp Biochem Physiol C 223:115–123. https://doi.org/10.1016/j.cbpc.2019.05.008

Article  CAS  Google Scholar 

Reckziegel P, Chen P, Caito S, Gubert P, Soares FA, Fachinetto R, Aschner M (2016) Extracellular dopamine and alterations on dopamine transporter are related to reserpine toxicity in Caenorhabditis elegans. Arch Toxicol 90:633–645. https://doi.org/10.1007/s00204-015-1451-7

Article  CAS  PubMed  Google Scholar 

Vijayan B, Raj V, Nandakumar S, Kishore A, Thekkuveettil A (2019) Spermine protects alpha-synuclein expressing dopaminergic neurons from manganese-induced degeneration. Cell Biol Toxicol 35:147–159. https://doi.org/10.1007/s10565-018-09449-1

Article  CAS  PubMed  Google Scholar 

Li J, Le W (2013) Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol 250:94–103. https://doi.org/10.1016/j.expneurol.2013.09.024

Article  CAS  PubMed  Google Scholar 

Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163:215–226. https://doi.org/10.1002/cne.901630207

Article  CAS  PubMed  Google Scholar 

Lai CH, Chou CY, Ch’ang LY, Liu CS, Lin W (2000) Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res 10:703–713. https://doi.org/10.1101/gr.10.5.703

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDonald PW, Hardie SL, Jessen TN, Carvelli L, Matthies DS, Blakely RD (2007) Vigorous motor activity in Caenorhabditis elegans requires efficient clearance of dopamine mediated by synaptic localization of the dopamine transporter DAT-1. J Neurosci 27:14216–14227. https://doi.org/10.1523/JNEUROSCI.2992-07.2007

Article  CAS  PubMed  PubMed Central  Google Scholar 

C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–8. https://doi.org/10.1126/science.282.5396.2012

Article  Google Scholar 

Oakes MD, Law WJ, Clark T, Bamber BA, Komuniecki R (2017) Cannabinoids activate monoaminergic signaling to modulate key C. elegans behaviors. J Neurosci 37:2859–2869. https://doi.org/10.1523/JNEUROSCI.3151-16.2017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peres FF, Levin R, Suiama MA, Diana MC, Gouvêa DA et al (2016) Cannabidiol prevents motor and cognitive impairments induced by reserpine in rats. Front Pharmacol 7:343. https://doi.org/10.3389/fphar.2016.00343

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94. https://doi.org/10.1093/genetics/77.1.71

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang MC, Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960. https://doi.org/10.1126/science.1162011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–631. https://doi.org/10.1016/s0896-6273(00)81199-x

Article  CAS  PubMed  Google Scholar 

Liao VHC et al (2011) Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev 132:480–487. https://doi.org/10.1016/j.mad.2011.07.008

Article  CAS  PubMed  Google Scholar 

Ortiz-Padilla S, Soto-Orduño E, Barrios ME et al (2020) Blockade of the dopaminergic neurotransmission with AMPT and reserpine induces a differential expression of genes of the dopaminergic phenotype in substantia nigra. Neuropharmacology 166:107920. https://doi.org/10.1016/j.neuropharm.2019.107920

Article  CAS  PubMed  Google Scholar 

Manzanza NO, Sedlackova L, Kalaria RN (2021) Alpha-synuclein post-translational modifications: implications for pathogenesis of lewy body disorders. Front Aging Neurosci 13:690293. https://doi.org/10.3389/fnagi.2021.690293

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif