Mitochondrial Complex I Inhibition in Dopaminergic Neurons Causes Altered Protein Profile and Protein Oxidation: Implications for Parkinson’s disease

Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33:305–310. https://doi.org/10.1016/0304-3940(82)90390-1

Article  CAS  PubMed  Google Scholar 

Schapira AH, Mann VM, Cooper JM et al (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145. https://doi.org/10.1111/j.1471-4159.1990.tb05809.x

Article  CAS  PubMed  Google Scholar 

Swerdlow RH, Parks JK, Miller SW et al (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40:663–671. https://doi.org/10.1002/ana.410400417

Article  CAS  PubMed  Google Scholar 

Lazarou M, Thorburn DR, Ryan MT, McKenzie M (2009) Assembly of mitochondrial complex I and defects in disease. Biochim Biophys Acta 1793:78–88. https://doi.org/10.1016/j.bbamcr.2008.04.015

Article  CAS  PubMed  Google Scholar 

Swalwell H, Kirby DM, Blakely EL et al (2011) Respiratory chain complex I deficiency caused by mitochondrial DNA mutations. Eur J Hum Genet 19:769–775. https://doi.org/10.1038/ejhg.2011.18

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srinivas Bharath MM (2017) Post-translational oxidative modifications of mitochondrial complex I (NADH: ubiquinone oxidoreductase): implications for pathogenesis and therapeutics in human diseases. J Alzheimers Dis 60:S69–S86. https://doi.org/10.3233/JAD-170117

Article  CAS  PubMed  Google Scholar 

Sunitha B, Gayathri N, Kumar M et al (2016) Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function. J Neurochem 138:174–191. https://doi.org/10.1111/jnc.13626

Article  CAS  PubMed  Google Scholar 

Nandipati S, Litvan I (2016) Environmental exposures and Parkinson’s disease. Int J Environ Res Public Health 13:881. https://doi.org/10.3390/ijerph13090881

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prasad KN, Carvalho E, Kentroti S et al (1994) Establishment and characterization of immortalized clonal cell lines from fetal rat mesencephalic tissue. In Vitro Cell Dev Biol Anim 30A:596–603. https://doi.org/10.1007/BF02631258

Article  CAS  PubMed  Google Scholar 

Mythri RB, Jagatha B, Pradhan N et al (2007) Mitochondrial complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 9:399–408. https://doi.org/10.1089/ars.2006.1479

Article  CAS  PubMed  Google Scholar 

Vali S, Mythri RB, Jagatha B et al (2007) Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson’s disease: a dynamic model. Neuroscience 149:917–930. https://doi.org/10.1016/j.neuroscience.2007.08.028

Article  CAS  PubMed  Google Scholar 

Chan FK-M, Moriwaki K, De Rosa MJ (2013) Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol Biol 979:65–70. https://doi.org/10.1007/978-1-62703-290-2_7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harish G, Venkateshappa C, Mythri RB et al (2010) Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: implications for Parkinson’s disease. Bioorg Med Chem 18:2631–2638. https://doi.org/10.1016/j.bmc.2010.02.029

Article  CAS  PubMed  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

Article  CAS  PubMed  Google Scholar 

Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906. https://doi.org/10.1038/nprot.2007.261

Article  CAS  PubMed  Google Scholar 

Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509. https://doi.org/10.1016/s0076-6879(96)64044-0

Article  CAS  PubMed  Google Scholar 

Butterfield DA, Stadtman ER (1997) Chapter 7 protein oxidation processes in aging brain. In: Timiras PS, Bittar EE (eds) Advances in cell aging and gerontology. Elsevier, pp 161–191

Google Scholar 

Ryan K, Backos DS, Reigan P, Patel M (2012) Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J Neurosci 32:11250–11258. https://doi.org/10.1523/JNEUROSCI.0907-12.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. https://doi.org/10.1002/jcc.21367

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng X-S, Geng W-S, Jia J-J (2018) Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro 10:1759091418777438. https://doi.org/10.1177/1759091418777438

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mythri RB, Raghunath NR, Narwade SC et al (2017) Manganese- and 1-methyl-4-phenylpyridinium-induced neurotoxicity display differences in morphological, electrophysiological and genome-wide alterations: implications for idiopathic Parkinson’s disease. J Neurochem 143:334–358. https://doi.org/10.1111/jnc.14147

Article  CAS  PubMed  Google Scholar 

Mohankumar T, Chandramohan V, Lalithamba HS et al (2020) Design and molecular dynamic investigations of 7,8-dihydroxyflavone derivatives as potential neuroprotective agents against alpha-synuclein. Sci Rep 10:599. https://doi.org/10.1038/s41598-020-57417-9

Article  CAS  PubMed  Google Scholar 

Zurita Rendón O, Silva Neiva L, Sasarman F, Shoubridge EA (2014) The arginine methyltransferase NDUFAF7 is essential for complex I assembly and early vertebrate embryogenesis. Hum Mol Genet 23:5159–5170. https://doi.org/10.1093/hmg/ddu239

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maiti P, Manna J, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl Neurodegener 6:28. https://doi.org/10.1186/s40035-017-0099-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Dijk KD, Berendse HW, Drukarch B et al (2012) The proteome of the locus ceruleus in Parkinson’s disease: relevance to pathogenesis. Brain Pathol 22:485–498. https://doi.org/10.1111/j.1750-3639.2011.00540.x

Article  CAS  PubMed  Google Scholar 

Basso M, Giraudo S, Corpillo D et al (2004) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4:3943–3952. https://doi.org/10.1002/pmic.200400848

Article  CAS  PubMed  Google Scholar 

Tribl F, Gerlach M, Marcus K et al (2005) “Subcellular proteomics” of neuromelanin granules isolated from the human brain. Mol Cell Proteom 4:945–957. https://doi.org/10.1074/mcp.M400117-MCP200

Article  CAS  Google Scholar 

Palacino JJ, Sagi D, Goldberg MS et al (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622. https://doi.org/10.1074/jbc.M401135200

Article  CAS  PubMed  Google Scholar 

Periquet M, Corti O, Jacquier S, Brice A (2005) Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. J Neurochem 95:1259–1276. https://doi.org/10.1111/j.1471-4159.2005.03442.x

Article  CAS  PubMed  Google Scholar 

Poon HF, Frasier M, Shreve N et al (2005) Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice–a model of familial Parkinson’s disease. Neurobiol Dis 18:492–498. https://doi.org/10.1016/j.nbd.2004.12.009

Article  CAS  PubMed  Google Scholar 

Heeman B, Van den Haute C, Aelvoet S-A et al (2011) Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci 124:1115–1125. https://doi.org/10.1242/jcs.078303

Article  CAS  PubMed  Google Scholar 

Yao Z, Gandhi S, Burchell VS et al (2011) Cell metabolism affects selective vulnerability in PINK1-associated Parkinson’s disease. J Cell Sci 124:4194–4202. https://doi.org/10.1242/jcs.088260

Article  CAS  PubMed  PubMed Central  Google Scholar 

Triplett JC, Zhang Z, Sultana R et al (2015) Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson’s disease. J Neurochem 133:750–765. https://doi.org/10.1111/jnc.13039

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif