An efflux pump deletion mutant enabling the discovery of a macrolide as an overlooked anti-P. aeruginosa active compound

Murray CJL, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.

Article  CAS  Google Scholar 

Willyard C. The drug-resistant bacteria that pose the greatest health threats. Nature. 2017;543:15.

Article  CAS  PubMed  Google Scholar 

Bodey GP, Bolivar R, Fainstein V, Jadeja L. Infections caused by Psudomonas aeruginosa. Rev Infect Dis. 1983;5:279–313.

Article  CAS  PubMed  Google Scholar 

Malhotra S, Hayes D Jr, Wozniak DJ. Cystic fibrosis and Pseudomonas aeruginosa: the host-microbe interface. Clin Microbiol Rev. 2019;32:e00138–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stoitsova SO, Bruan Y, Ullrich MS, Weingart H. Charactarization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae. Appl Environ Microbiol. 2008;74:3387–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrer-Espada R, Shahrour H, Pitts B, Stewart PS, Sánchez-Gómez S, Martínez-De-Tejada G. A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Sci Rep. 2019;9:3452.

Article  PubMed  PubMed Central  Google Scholar 

Morita Y, Komori Y, Mima T, Kuroda T, Mizushima T, Tsuchiya T. Construction of a series of mutants lacking all of the four major mex operons for multidrug efflux pumps or possessing each one of the operons from Pseudomonas aeruginosa PAO1: MexCD-OprJ is an inducible pump. FEMS Microbiol Lett. 2001;202:139–43.

Article  CAS  PubMed  Google Scholar 

Mima T, Kohira N, Li Y, Sekiya H, Ogawa W, Kuroda T, et al. Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpmB possessing two RND coomponents in Pseudomonas aeruginosa. Microbiolgy. 2009;155:3509–17.

Article  CAS  Google Scholar 

Ōmura S. Microbial metabolites: 45years of wandering, wondering and discovering. Tetrahedron. 2011;67:6420–59.

Article  Google Scholar 

Ishiyama A, Hokari R, Nonaka K, Chiba T, Miura H, Otoguro K, et al. Diatretol, an å, a’-dioxo-diketopiperazine, is a potent in vitro and in vivo antimalarial. J Antibiot. 2021;74:266–68.

Article  CAS  Google Scholar 

Kobayashi C, Watanabe Y, Oshima M, Hirose T, Yamasaki M, Iwamoto M, et al. Fungal secondary metabolite exophillic acid selectively inhibits the entry of hepatitis B and D viruses. Viruses. 2022;14:764.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kondo N, Kimishima A, Maruyama S, Sato M, Yuge H, Ohta Y, et al. The establishment of a high-sensitive insecticidal activity detection system using silkworm first instar larvae enables efficiently search for insecticide seed compounds. ACS Agric Sci Technol. 2023. https://doi.org/10.1021/acsagscitech.2c00293.

Phan LT, Qui YL, Or YS, Vo NH, Jian T, Hou Y, Busuyek M. 23-O-Substituted 5-O-Mycaminosyltylonide Derivatives. WO03089446A2 (2003).

Lamers RP, Cavallari JF, Burrows LL. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS One. 2013;8:e60666.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial ausceptibility testing, 32nd Edition. (2022). Available from: https://clsi.org.

Leber AL, et al. Clinical microbiology procedures handbook. Volume 1–3, 4th ed. ASM Press; 2016. American Society for Microbiology.

Sugawara A, Maruyama H, Shibusawa S, Matsui H, Hirose T, Tsutsui A, et al. 5-O-Mycaminosyltylonolide antibacterial derivatives: design, synthesis and bioactivity. J Antibiot. 2017;70:878–87.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif