New insight on the correlation of immune landscapes with immune markers expression in different risk classification of gastrointestinal stromal tumors

Kindblom LG, Remotti HE, Aldenborg F, et al. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol. 1998;152:1259–69.

CAS  PubMed  PubMed Central  Google Scholar 

Parab TM, DeRogatis MJ, Boaz AM, et al. Gastrointestinal stromal tumors: a comprehensive review. J Gastrointest Oncol. 2019;10:144–54.

Article  PubMed  PubMed Central  Google Scholar 

Hemming ML, Heinrich MC, Bauer S, et al. Translational insights into gastrointestinal stromal tumor and current clinical advances. Ann Oncol. 2018;29:2037–45.

Article  CAS  PubMed  Google Scholar 

Boikos SA, Pappo AS, Killian JK, et al. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the national institutes of health gastrointestinal stromal tumor clinic. JAMA Oncol. 2016;2:922–8.

Article  PubMed  PubMed Central  Google Scholar 

Andersson J, Sihto H, Meis-Kindblom JM, et al. NF1-associated gastrointestinal stromal tumors have unique clinical, phenotypic, and genotypic characteristics. Am J Surg Pathol. 2005;29:1170–6.

Article  PubMed  Google Scholar 

Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001;344:1052–6.

Article  CAS  PubMed  Google Scholar 

Demetri GD, van Oosterom AT, Garrett CR, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368:1329–38.

Article  CAS  PubMed  Google Scholar 

Demetri GD, Reichardt P, Kang YK, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:295–302.

Article  CAS  PubMed  Google Scholar 

Janku F, Abdul Razak AR, Chi P, et al. Switch control inhibition of KIT and PDGFRA in patients with advanced gastrointestinal stromal tumor: a phase i study of ripretinib. J Clin Oncol. 2020;38:3294–303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ray K. Ripretinib for advanced gastrointestinal stromal tumours. Nat Rev Gastroenterol Hepatol. 2020;17:452.

PubMed  Google Scholar 

Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 2022;40:586–97.

Article  CAS  PubMed  Google Scholar 

Sangro B, Sarobe P, Hervas-Stubbs S, et al. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:525–43.

Article  PubMed  PubMed Central  Google Scholar 

Thoma C. Kidney cancer: combining targeted and immunotherapy. Nat Rev Urol. 2018;15:263.

PubMed  Google Scholar 

Finck AV, Blanchard T, Roselle CP, et al. Engineered cellular immunotherapies in cancer and beyond. Nat Med. 2022;28:678–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adusumilli PS, Zauderer MG, Riviere I, et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 2021;11:2748–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun X, Shu P, Fang Y, et al. Clinical and prognostic significance of tumor-infiltrating CD8+ T cells and PD-L1 expression in primary gastrointestinal stromal tumors. Front Oncol. 2021;11: 789915.

Article  PubMed  PubMed Central  Google Scholar 

Sun X, Sun J, Yuan W, et al. Immune cell infiltration and the expression of PD-1 and PD-L1 in primary PDGFRA-mutant gastrointestinal stromal tumors. J Gastrointest Surg. 2020. https://doi.org/10.1007/s11605-020-04860-8.

Article  PubMed  Google Scholar 

van Dongen M, Savage ND, Jordanova ES, et al. Anti-inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitor-treated gastrointestinal stromal tumors. Int J Cancer. 2010;127(4):899–909.

PubMed  Google Scholar 

Cameron S, Gieselmann M, Blaschke M, et al. Immune cells in primary and metastatic gastrointestinal stromal tumors (GIST). Int J Clin Exp Pathol. 2014;7:3563–79.

CAS  PubMed  PubMed Central  Google Scholar 

Rusakiewicz S, Semeraro M, Sarabi M, et al. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Can Res. 2013;73:3499–510.

Article  CAS  Google Scholar 

Balachandran VP, Cavnar MJ, Zeng S, et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med. 2011;17:1094–100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen LL, Chen X, Choi H, et al. Exploiting antitumor immunity to overcome relapse and improve remission duration. Cancer Immunol Immunother. 2012;61:1113–24.

Article  CAS  PubMed  Google Scholar 

Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity. 2018;48:434–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng M, Jiang W, Kim BYS, et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 2019;19:568–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joensuu H, Vehtari A, Riihimaki J, et al. Risk of recurrence of gastrointestinal stromal tumour after surgery: an analysis of pooled population-based cohorts. Lancet Oncol. 2012;13:265–74.

Article  PubMed  Google Scholar 

El-Menyar A, Mekkodathil A, Al-Thani H. Diagnosis and management of gastrointestinal stromal tumors: an up-to-date literature review. J Cancer Res Ther. 2017;13:889–900.

CAS  PubMed  Google Scholar 

Burch J, Ahmad I. Gastrointestinal stromal cancer. Treasure Island: StatPearls; 2022.

Google Scholar 

Lu X. OX40 and OX40L interaction in cancer. Curr Med Chem. 2021;28:5659–73.

Article  CAS  PubMed  Google Scholar 

Deng J, Zhao S, Zhang X, et al. OX40 (CD134) and OX40 ligand, important immune checkpoints in cancer. Onco Targets Ther. 2019;12:7347–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim MY, Gaspal FM, Wiggett HE, et al. CD4(+)CD3(-) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity. 2003;18:643–54.

Article  CAS  PubMed  Google Scholar 

Gracias DT, Sethi GS, Mehta AK, et al. Combination blockade of OX40L and CD30L inhibits allergen-driven memory TH2 cell reactivity and lung inflammation. J Allergy Clin Immunol. 2021;147:2316–29.

Article  CAS  PubMed  Google Scholar 

Zhang X, Xiao X, Lan P, et al. OX40 costimulation inhibits Foxp3 expression and treg induction via BATF3-dependent and independent mechanisms. Cell Rep. 2018;24:607–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med. 2008;205:825–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voo KS, Bover L, Harline ML, et al. Antibodies targeting human OX40 expand effector T cells and block inducible and natural regulatory T cell function. J Immunol. 2013;191:3641–50.

Article  CAS  PubMed  Google Scholar 

Ye K, Li F, Wang R, et al. An armed oncolytic virus enhances the efficacy of tumor-infiltrating lymphocyte therapy by converting tumors to artificial antigen-presenting cells in situ. Mol Ther. 2022. https://doi.org/10.1016/j.ymthe.2022.06.010.

Article  PubMed  PubMed Central  Google Scholar 

Song M, Gao J, Yan T, et al. Hsa_circ_0000652 aggravates inflammation by activation of macrophages and enhancement of OX40/OX40L interaction in ankylosing spondylitis. Front Cell Dev Biol. 2021;9: 737599.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif