Effect of mulberry fruit extract on glucose fluxes after a wheat porridge meal: a dual isotope study in healthy human subjects

Blaak E, Antoine JM, Benton D, Björck I, Bozzetto L, Brouns F, et al. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev. 2012;13:923–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ceriello A, Colagiuri S. International Diabetes Federation guideline for management of postmeal glucose: a review of recommendations. Diabet Med. 2008;25:1151–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Livesey G, Taylor R, Livesey H, Liu S. Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr. 2013;97:584–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomas D, Elliott E. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst Rev. 2009;1:CD006296.

Google Scholar 

Phimarn W, Wichaiyo K, Silpsavikul K, Sungthong B, Saramunee K. A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile. Eur J Nutr. 2017;56:1509–21.

Article  CAS  PubMed  Google Scholar 

Lown M, Fuller R, Lightowler H, Fraser A, Gallagher A, Stuart B, et al. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: results of a randomised double-blind placebo-controlled study. PLoS ONE. 2017;12:e0172239.

Article  PubMed  PubMed Central  Google Scholar 

Kimura T, Nakagawa K, Kubota H, Kojima Y, Goto Y, Yamagishi K, et al. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J Agric Food Chem. 2007;55:5869–74.

Article  CAS  PubMed  Google Scholar 

Mela DJ, Cao X-Z, Govindaiah S, Hiemstra H, Kalathil R, Lin L, et al. Dose-response efficacy of mulberry fruit extract for reducing post-prandial blood glucose and insulin responses: randomized trial evidence in healthy adults. Br J Nutr. 2022:1–8, https://doi.org/10.1017/S0007114522000824.

Oku T, Yamada M, Nakamura M, Sadamori N, Nakamura S. Inhibitory effects of extractives from leaves of Morus alba on human and rat small intestinal disaccharidase activity. Br J Nutr. 2006;95:933–8.

Article  CAS  PubMed  Google Scholar 

van de Laar FA, Lucassen PBLJ, Akkermans RP, van de Lisdonk EH, Rutten GEHM, van Weel C. Alpha-glucosidase inhibitors for type 2 diabetes mellitus (Review). Cochrane Libr. 2005;2:CD003639.

Google Scholar 

Standl E, Schnell O. Alpha-glucosidase inhibitors 2012 - cardiovascular considerations and trial evaluation. Diabetes Vasc Dis Res. 2012;9:163–9.

Article  Google Scholar 

Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother. 2015;16:1959–81.

Article  PubMed  Google Scholar 

Mela DJ, Cao X-Z, Dobriyal R, Fowler MI, Li L, Manoj J, et al. The effect of 8 plant extracts and combinations on post-prandial blood glucose and insulin responses in healthy adults: a randomized controlled trial. Nutr Metab. 2020;17:51.

Article  Google Scholar 

Józefczuk J, Malikowska K, Glapa A, Stawińska-Witoszyńska B, Nowak JK, Bajerska J, et al. Mulberry leaf extract decreases digestion and absorption of starch in healthy subjects—a randomized, placebo-controlled, crossover study. Adv Med Sci. 2017;62:302–6.

Article  PubMed  Google Scholar 

Boers HM, Alssema M, Mela DJ, Peters HP, Vonk RJ, Priebe MG. The rate of glucose appearance is related to postprandial glucose and insulin responses in adults: a systematic review and meta-analysis of stable isotope studies. J Nutr. 2019;149:1896–903.

Article  PubMed  Google Scholar 

Eelderink C, Moerdijk-Poortvliet TCW, Wang H, Schepers M, Preston T, Boer T, et al. The glycemic response does not reflect the in vivo starch digestibility of fiber-rich wheat products in healthy men. J Nutr. 2012;142:258–63.

Article  CAS  PubMed  Google Scholar 

Eelderink C, Schepers M, Preston T, Vonk RJ, Oudhuis L, Priebe MG. Slowly and rapidly digestible starchy foods can elicit a similar glycemic response because of differential tissue glucose uptake in healthy men. Am J Clin Nutr. 2012;96:1017–24.

Article  CAS  PubMed  Google Scholar 

Nazare JA, Normand S, Oste Triantafyllou A, Brac de la Perrière A, Desage M, Laville M. Modulation of the postprandial phase by β‐glucan in overweight subjects: effects on glucose and insulin kinetics. Mol Nutr Food Res. 2009;53:361–9.

Article  CAS  PubMed  Google Scholar 

Priebe MG, Wachters-Hagedoorn RE, Heimweg JA, Small A, Preston T, Elzinga H, et al. An explorative study of in vivo digestive starch characteristics and postprandial glucose kinetics of wholemeal wheat bread. Eur J Nutr. 2008;47:417–23.

Article  CAS  PubMed  Google Scholar 

Schenk S, Davidson CJ, Zderic TW, Byerley LO, Coyle EF. Different glycemic indexes of breakfast cereals are not due to glucose entry into blood but to glucose removal by tissue. Am J Clin Nutr. 2003;78:742–8.

Article  CAS  PubMed  Google Scholar 

Boers HM, van Dijk TH, Hiemstra H, Hoogenraad AR, Mela DJ, Peters HPF, et al. Effect of fibre additions to flatbread flour mixes on glucose kinetics: a randomised controlled trial. Br J Nutr. 2017;118:777–87.

Article  CAS  PubMed  Google Scholar 

Julious SA. Sample size of 12 per group rule of thumb for a pilot study. Pharm Stat. 2005;4:287–91.

Article  Google Scholar 

Williams EJ. Experimental designs balanced for the estimation of residual effects of treatments. Aust J Chem. 1949;2:149–68.

Article  Google Scholar 

van Dijk TH, Boer TS, Havinga R, Stellaard F, Kuipers F, Reijngoud D-J. Quantification of hepatic carbohydrate metabolism in conscious mice using serial blood and urine spots. Anal Biochem. 2003;322:1–13.

Article  PubMed  Google Scholar 

Lee WNP, Bergner EA, Guo Z. Mass isotopomer pattern and precursor‐product relationship. Biol Mass Spectrom. 1992;21:114–22.

Article  CAS  PubMed  Google Scholar 

Steele R, Wall JS, De Bodo RC, Altszuler N. Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am J Physiol. 1956;187:15–24.

Article  CAS  PubMed  Google Scholar 

Debodo RC, Steele R, Altszuler N, Dunn A, Bishop JS. On the hormonal regulation of carbohydrate metabolism: studies with 14C. Recent Prog Horm Res. 1963;19:445–88.

CAS  PubMed  Google Scholar 

Radziuk J. Tracer methods and the metabolic disposal of a carbohydrate load in man. Diabetes Metab Rev. 1987;3:231–67.

Article  CAS  PubMed  Google Scholar 

Tissot S, Normand S, Guilluy R, Pachiaudi C, Beylot M, Laville M, et al. Use of a new gas chromatograph isotope ratio mass spectrometer to trace exogenous 13C labelled glucose at a very low level of enrichment in man. Diabetologia 1990;33:449–56.

Article  CAS  PubMed  Google Scholar 

Shreeve WW, Cerasi E, Luft R. Metabolism of [2-14C] pyruvate in normal, acromegalic and hgh-treated human subjects. Acta Endocrinol. 1970;65:155–69.

CAS  Google Scholar 

Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93:62–6.

Article  CAS  PubMed  Google Scholar 

FAO. Carbohydrates in human nutrition (FAO Food and Nutrition Paper-66). Report of a Joint FAO/WHO Expert Consultation. Food and Agriculture Organization. Rome; 1998.

Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer FX. The use of areas under curves in diabetes research. Diabetes Care. 1995;18:245–50.

Article  CAS  PubMed  Google Scholar 

Kwon O, Eck P, Chen S, Corpe CP, Lee JH, Kruhlak M, et al. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 2007;21:366–77.

Article  CAS  PubMed  Google Scholar 

Livesey G, Wilson P, Dainty JR, Brown J, Faulks R, Roe M, et al. Simultaneous time-varying systemic appearance of oral and hepatic glucose in adults monitored with stable isotopes. Am J Physiol Endocrinol Metab. 1998;275:E717–28.

Article  CAS  Google Scholar 

Elleri D, Allen J, Harris J, Kumareswaran K, Nodale M, Leelarathna L, et al. Absorption patterns of meals containing complex carbohydrates in type 1 diabetes. Diabetologia. 2013;56:1108–17.

Article  CAS  PubMed  Google Scholar 

Péronnet F, Meynier A, Sauvinet V, Normand S, Bourdon E, Mignault D, et al. Plasma glucose kinetics and response of insulin and GIP following a cereal breakfast in female subjects: effect of starch digestibility. Eur J Clin Nutr. 2015;69:740–5.

Article  PubMed  PubMed Central  Google Scholar 

Rizza RA, Toffolo G, Cobelli C. Accurate measurement of postprandial glucose turnover: why is it difficult and how can it be done (relatively) simply? Diabetes. 2016;65:1133–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haidar A, Elleri D, Allen J, Harris J, Kumareswaran K, Nodale M, et al. Validity of triple-and dual-tracer techniques to estimate glucose appearance. Am J Physiol Endocrinol Metab. 2012;302:E1493–E501.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasmans K, Meex RC, Trommelen J, Senden JM, Vaughan EE, van Loon LJ, et al. L-arabinose co-ingestion delays glucose absorption derived from sucrose in healthy men and women: a double-blind, randomised crossover trial. Br J Nutr. 2022;128:1072–81.

Article 

留言 (0)

沒有登入
gif