Reference intervals for cd, hg, Mn and Pb in the general children population (3–14 years) of Kinshasa, Democratic Republic of Congo (DRC) between June 2019 and June 2020

UNEP United Nations Environment Programme. Final review of scientific information on Lead, version of December 2010. United Nations Environment Programme, Chemicals Branch, Nairobi. 2010. https://www.cms.int/sites/default/files/document/UNEP_GC26_INF_11_Add_1_Final_UNEP_Lead_review_and_apppendix_Dec_2010.pdf. (Accessed 26 October 2022).

Nordberg, G.F., Fowler, B.A., Nordberg, M. Handbook on the toxicology of metals, 4. Elsevier, Amsterdam [ao]. 2015. https://doi.org/10.1016/C2011-0-07884-5.

ATSDR (Agency for Toxic Substances and Disease Registry). ATSDR (Ed) Toxicological Profile for Cadmium, U.S. Department of Health and Human Services. Public Health Service, Atlanta, GA. 2012.

ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for manganese. U.S. Department of Health and Human Services Atlanta, GA, Atlanta, GA, USA. 2012.

ATSDR (Agency for Toxic Substances and Disease Registry). Lead – ToxFAQs, 2020. https://www.atsdr.cdc.gov/toxfaqs/tfacts13.pdf.

WHO (World Health Organization). Lead in drinking-water - background document for development of WHO - guidelines for drinking-water quality. Geneva: WHO; 2016.

Google Scholar 

Jarup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238(3):201–8.

Article  PubMed  Google Scholar 

Bellinger. Very low lead exposures and children’s neurodevelopment. Curr Opin Pediatr. 2008;20:172–7.

Article  PubMed  Google Scholar 

ECHA (European Chemicals Agency). Substance information on Cadmium. 2020. https://echa.europa.eu/substanceinformation/-/substanceinfo/100.028.320. (Accessed 29 October 2022).

ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for lead. 2007. https://www.atsdr.cdc.gov/toxfaqs/tfacts13.pdf.

WHO (World Health Organization), 2019. Preventing Disease through healthy environment. In: Organization, W.H., Health, D.o.P., Health, E.a.S.D.o. (Eds.), Exposure to Lead: A Major Public Health Concern, Geneva; Switzerland. https://apps.who.int/iris/bitstream/handle/10665/329953/WHO-CED-PHE-EPE-19.4.7-eng.pdf?ua=1. (Accessed 6 October 2022).

Gurer-Orhan HU, Sabir HO. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead– exposed workers. Toxicol. 2004;195(2–3):147–54.

Article  CAS  Google Scholar 

IARC (International Agency for Research on Cancer). Inorganic and organic Lead compounds. Lyon: International Agency for Research on Cancer; 2006. https://publications.iarc.fr/105.

Google Scholar 

ECHA (European Chemicals Agency). Substance information on Lead. 2020. https://echa.europa.eu/substance-info rmation/-/substanceinfo/100.028.273. (Accessed 30 October 2022).

ATSDR (Agency for Toxic Substances and Disease Registry), 1999. Toxicological profile for mercury. U.S. Department of Health and Human Services, Atlanta, GA., 1999. (Accessed 24 October 2022).

ECHA (European chemicals agency). Substance information on Mercury, 2020. https://echa.europa.eu/substanceinformation/-/substanceinfo/100.028.278. (Accessed 25 October 2022).

ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for manganese. U.S. Department of Health and Human Services Atlanta, GA, Atlanta, GA, USA. 2012

Oulhote Y, Mergler D, Bouchard Maryse MF. Sex-and age-differences in blood manganese levels in the U.S. general population: national health and nutrition examination survey 2011–2012. Environ Health. 2014;13(87):1–10.

Google Scholar 

Henn BC, Ettinger AS, Schwartz J, Téllez-Rojo MM, Lamadrid-Figueroa H, Hernández-Avila M, et al. Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiol. 2010;21:433–9.

Article  Google Scholar 

Ferguson A, Penney R, Solo-Gabriele H. A review of the field on children’s exposure to environmental contaminants: a risk assessment approach. Int J Environ Res Public Health. 2017;14:1–25. https://doi.org/10.3390/ijerph14030265.

Article  CAS  Google Scholar 

Tuakuila J, Kabamba M, Mata H, Mata G, Mbuyi F. Tentative reference values for environmental pollutants in blood or urine from the children of Kinshasa. Chemosphere. 2015;139:326–33.

Article  CAS  PubMed  Google Scholar 

Moya J, Bearer CF, Etzel RA. Children's behavior and physiology and how it affects exposure to environmental contaminants. Pediatrics. 2004;113(4):996–1006.

Article  PubMed  Google Scholar 

Tkalec Z, Codling J, Tratnik JS, Mazej D, Klanov J, Horvat M, et al. Suspect and non-targeted screening-based human biomonitoring identified 74 biomarkers of exposure in urine of Slovenian children. Environ Pollut. 2022;313:120091.

Article  CAS  PubMed  Google Scholar 

WHO (World Health Organization). Childhood Lead Poisoning. WHO, Geneva. 2010. https://www.who.int/ceh/publications/leadguidance.pdf. (Accessed 26 October 2022).

Bernard A. Biomarkers of metal toxicity in population studies: research potential and interpretation issues. J Toxicol Environ Health Part A. 2008;71:1259–65.

Article  CAS  Google Scholar 

Wigle DT, Arbuckle TE, Turner MC, Bérubé A, Yang Q, Liu S, et al. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxicol Environ Health B Crit Rev. 2008;11(5–6):373–517.

Article  CAS  PubMed  Google Scholar 

Angerer J, Bird MJ, Burke TA, Doerrer NG, Needham L, Robison SH, et al. Strategic biomonitoring initiatives: moving the science forward. Toxicol Sci. 2006;93:3–10.

Article  CAS  PubMed  Google Scholar 

Angerer J, Ewers U, Wilhelm M. Human biomonitoring: state of the art. Int J Hyg Environ Health. 2007;210(3–4):201–28.

Article  CAS  PubMed  Google Scholar 

NRC (National Research Council). Exposure science in the 21st century: a vision and a strategy. Washington, DC: National Academies Press; 2012.

Google Scholar 

Ganzleben C, Antignac JP, Barouki R, Castano A, Fiddicke U, et al. Human biomonitoring as a tool to support chemicals regulation in the European Union. Int J Hyg Environ Health. 2017;220:94–7.

Article  CAS  PubMed  Google Scholar 

Ewers U, Krause C, Schulz C, Wilhel M. Reference values and human biological monitoring values for environmental toxins. Int Arch Occup Environ Health. 1999;72:255–60.

Article  CAS  PubMed  Google Scholar 

NRC (National Research Council). National Research Council’s human biomonitoring for environmental chemicals. Washington, DC: National Academy of Sciences; 2006.

Google Scholar 

Apel P, Rousselle C, Lange R, Sissoko F, Kolossa-Gehring M, Ougier E. Human biomonitoring initiative (HBM4EU) - strategy to derive human biomonitoring guidance values (HBM-GVs) for health risk assessment. Int J Hyg Environ Health. 2020;230:113622.

Article  PubMed  Google Scholar 

Jeddi ZM, Hop NB, Louro H, Viegas S, Gale KS, Pasanen-Kase R, et al. Developing human biomonitoring as a 21st century toolbox within the European exposure science strategy 2020–2030. Environ Int. 2022;168:107476.

Article  Google Scholar 

Brune D, Nordberg GF, Vesterberg O, Gerhardsson L, Wester PO. A review of normal concentrations of mercury in human blood. Sci Total Environ. 1991;100:235–82.

Article  PubMed  Google Scholar 

Solberg H. The IFCC recommendation on estimation of reference intervals. The ref Val program. Clin Chem Lab Med. 2004;42:710–4.

Article  CAS  PubMed  Google Scholar 

Saravanabhavan G, Werry K, Walker M, Haines D, Malowany M, Khoury C. Human biomonitoring reference values for metals and trace elements in blood and urine derived from the Canadian health measures survey 2007–2013. Int J Hyg Environ Health. 2017;220:189–200.

Article  CAS  PubMed  Google Scholar 

Poulson O, Holst E, Christensen J. Calculation and application of coverage intervals for biological reference values (technical report). Pure Appl Chem. 1997;69:1601–12.

Article  Google Scholar 

Banza N, Nawrot TS, Haufroid V, Decrée S, DePuttere T, Smolder E, et al. High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ Res. 2009;109:745–52.

Article  CAS  PubMed  Google Scholar 

Kabamba MM, Mata HN, Mulaji CK, Mbuyi FB, Elongi-Moyene JP, Tuakuila JK. Human biomonitoring in the Democratic Republic of Congo (DRC): a systematic review. Sc Afr. 2021;13:e00906.

CAS  Google Scholar 

Manda BK, Colinet G, Andre L, Manda AC, Marquet JP, Micha JC. Evaluation of contamination of the food chain by trace elements (Cu, Co, Zn, Pb, Cd, U, V and As) in the basin of the upper Lufira (Katanga/DR Congo). Tropicultura. 2010;28(4):246–52.

Google Scholar 

Tuakuila J, Lison D, Lantin AC, Mbuyi F, Deumer G, Haufroid V, et al. Worrying exposure to trace elements in the population of Kinshasa, Democratic Republic of Congo (DRC). Int Arch Occup Environ Health. 2012;85(8):925–39.

Article  Google Scholar 

Ancelle T. Statistique Epide’miologie.1e’re Ed. Paris: Maloine; 2002.

Google Scholar 

Jeddi ZM, Virgolino A, Fantke P, Hopf NB, Galea KS, Remy S, et al. A human biomonitoring (HBM) global registry framework: further advancement of HBM research following the FAIR principles. Int J Hyg Environ Health. 2021;238:113826.

Article  Google Scholar 

Health Canada. Fifth report on human biomonitoring of environmental Chemicals in Canada: results of the Canadian health measures survey cycle 5 (2018–2019). Ottawa: Minister of Health; 2021. (Accessed 22 October 2022)

Google Scholar 

Jaffé MZ. About the precipitation caused by picric acid in normal urine and about a new reaction of creatinine. Z Physiol Chem. 1986;10:391–400.

Google Scholar 

Nübler S, Lopez EM, Castano A, Mol H, Schafer M, Haji-Abbas-Zarrabi K. Interlaboratory comparison investigations (ICI) and external quality assurance schemes (EQUAS) for cadmium in urine and blood: results from the HBM4EU project. Int J Hyg Environ Health. 2021;234:3711.

Article  Google Scholar 

Vogel N, Murawski A, Schmied-Tobies MIH, Rucic E, Doyle U, Kampfe A, et al. Lead, cadmium, mercury, and chromium in urine and blood of children and adolescents in Germany – human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Int J Hyg Environ Health. 2021;237. https://doi.org/10.1016/j.ijheh.2021.113822.

Hornung RW, Reed L. Estimation of average concentration in the presence of nondetectable values. App Occup Environ Hygiene. 1990;5:46–51.

Article  CAS  Google Scholar 

INSPQ (Institut national de santé publique du Québec). Méthode d’analyse pour doser les métaux et autres éléments dans le sang par spectrométrie de masse à plasma d’argon induit (ICP-MS), DRC II (M-572-10), format condensé pour ECMS. Québec, QC: Laboratoire de toxicologie; 2018.

Google Scholar 

Cole SR, Chu H, Nie L, Schisterman EF. Estimating the odds ratio when exposure has a limit of detection. Int J Epidemiol. 2009;38:1674–80.

Article  PubMed  PubMed Central  Google Scholar 

WHO (World Health Organization). Trace elements in human nutrition and health. Geneva: World Health Organisation; 1996.

Google Scholar 

Gilles L, Govarts E, Rambaud L, Vogel N, Castano A, Lopez ME, et al. HBM4EU combines and harmonises human biomonitoring data across the EU, building on existing capacity – the HBM4EU survey. Int J Hyg Environ Health. 2021;237(2021):113809.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tuakuila J, Lison D, Mbuyi F, Haufroid V, Hoet P. Elevated blood lead levels and sources of exposure in the population of Kinshasa, the capital of the Democratic Republic of Congo. J Expo Sci Environ Epidemiol. 2013;23:81–7.

Article  CAS  PubMed  Google Scholar 

Burm E, Songc I, Ha M, Kime YM, Leef KJ, Kim HC. Representative levels of blood lead, mercury, and urinary cadmium in youth: Korean environmental health survey in children and adolescents (KorEHS-C), 2012–2014. Int J Hyg Environ Health. 2016;219:412–8.

Article  CAS 

留言 (0)

沒有登入
gif