Relevance of Human Aldoketoreductases and Microbial {beta}-Glucuronidases in Testosterone Disposition [Articles]

Abstract

Testosterone exhibits high variability in pharmacokinetics and glucuronidation after oral administration. Although testosterone metabolism has been studied for decades, the impact of UGT2B17 gene deletion and the role of gut bacterial β-glucuronidases on its disposition are not well characterized. We first performed an exploratory study to investigate the effect of UGT2B17 gene deletion on the global liver proteome, which revealed significant increases in proteins from multiple biological pathways. The most upregulated liver proteins were aldoketoreductases [AKR1D1, AKR1C4, AKR7A3, AKR1A1, and 7-dehydrocholesterol reductase (DHCR7)] and alcohol or aldehyde dehydrogenases (ADH6, ADH1C, ALDH1A1, ALDH9A1, and ALDH5A). In vitro assays revealed that AKR1D1 and AKR1C4 inactivate testosterone to 5β-dihydrotestosterone (5β-DHT) and 3α,5β-tetrahydrotestosterone (3α,5β-THT), respectively. These metabolites also appeared in human hepatocytes treated with testosterone and in human serum collected after oral testosterone dosing in men. Our data also suggest that 5β-DHT and 3α, 5β-THT are then eliminated through glucuronidation by UGT2B7 in UGT2B17 deletion individuals. Second, we evaluated the potential reactivation of testosterone glucuronide (TG) after its secretion into the intestinal lumen. Incubation of TG with purified gut microbial β-glucuronidase enzymes and with human fecal extracts confirmed testosterone reactivation into testosterone by gut bacterial enzymes. Both testosterone metabolic switching and variable testosterone activation by gut microbial enzymes are important mechanisms for explaining the disposition of orally administered testosterone and appear essential to unraveling the molecular mechanisms underlying UGT2B17-associated pathophysiological conditions.

SIGNIFICANCE STATEMENT This study investigated the association of UGT2B17 gene deletion and gut bacterial β-glucuronidases with testosterone disposition in vitro. The experiments revealed upregulation of AKR1D1 and AKR1C4 in UGT2B17 deletion individuals, and the role of these enzymes to inactivate testosterone to 5β-dihydrotestosterone and 3α, 5β-tetrahydrotestosterone, respectively. Key gut bacterial species responsible for testosterone glucuronide activation were identified. These data are important for explaining the disposition of exogenously administered testosterone and appear essential to unraveling the molecular mechanisms underlying UGT2B17-associated pathophysiological conditions.

FootnotesReceived June 4, 2022.Accepted December 6, 2022.

This work was partly supported by National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development [Grant R01-HD081299] (to B.P.) and National Institute of General Medical Sciences [Grant GM135218] (to M.R.R.), the Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, and the Department of Pharmaceutics, University of Washington, Seattle, WA.

M.R.R. is cofounder of Symberix, Inc, and is the recipient of research funding from Lilly and Merck. B.P. is cofounder of Precision Quantomics Inc and recipient of research funding from Bristol Myers Squibb, Genentech, Gilead, Merck, Takeda, and Generation Bio.

dx.doi.org/10.1124/dmd.122.000975.

Embedded ImageEmbedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics

留言 (0)

沒有登入
gif