Genomic rearrangements and evolutionary changes in 3D chromatin topologies in the cotton tribe (Gossypieae)

Vimala Y, Lavania S, Lavania UC. Chromosome change and karyotype differentiation–implications in speciation and plant systematics. Nucleus. 2021;64:33–54.

Article  CAS  Google Scholar 

Fuchs J, Brandes A, Schubert I. Telomere sequence localization and karyotype evolution in higher plants. Plant Syst Evol. 1995;196:227–41.

Article  CAS  Google Scholar 

Peruzzi L, Eroğlu HE. Karyotype asymmetry: again, how to measure and what to measure? Comp Cytogenet. 2013;7:1–9.

Article  PubMed  PubMed Central  Google Scholar 

Weiss-Scheeweiss H, Stuessy T. Chromosome numbers, karyotypes, and evolution in Melampodium (Asteraceae). Int J Plant Sci. 2009;170:1168–82.

Article  Google Scholar 

Lazar NH, Nevonen KA, O’Connell B, McCann C. Epigenetic maintenance of topological domains in the highly rearranged gibbon genome. Genome Res. 2018;28:983–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Renschler G, Richard G, Valsecchi CIK, Toscano S, Arrigoni L, Ramírez F, Akhtar A. Hi-C guided assemblies reveal conserved regulatory topologies on X and autosomes despite extensive genome shuffling. Genes Dev. 2019;33:1591–612.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao Y, Wang J, Zhu Z, Liu Y, Chen J, Zhou Y, Liu F, Lei J, Gaut BS, Cao B, et al. The 3D architecture of the pepper genome and its relationship to function and evolution. Nat Commun. 2022;13:3479.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin Y, Fan H, Zhou B, Hu Y, Fan G, Wang J, Zhou F, Nie W, Zhang C, Liu L. Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer. Nat Commun. 2021;12:1–15.

Article  Google Scholar 

Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Hansen RS, Canfield TK. Topologically associating domains are stable units of replication-timing regulation. Nature. 2014;515:402–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lieberman-Aiden E, Berkum N, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B, Sabo P, Dorschner M, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz C, Weigel D. Genome-wide analysis of local chromatin packing In Arabidopsis thaliana Genome Res. 2015;25:246–56.

Article  PubMed  PubMed Central  Google Scholar 

Tian L, Ku L, Yuan Z, Wang C, Su H, Wang S, Song X, Dou D, Ren Z, Lai J, et al. Large-scale reconstruction of chromatin structures of maize temperate and tropical inbred lines. J Exp Bot. 2021;72:3582–96.

Article  CAS  PubMed  Google Scholar 

Szabo Q, Jost D, Chang JM, Cattoni DI, Cavalli G. TADs are 3D structural units of higher-order chromosome organization in Drosophila Science Advances. 2018;4:eaar8082.

Article  PubMed  PubMed Central  Google Scholar 

Lupiáñez Darío G, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz John M, Laxova R, et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 2015;161:1012–25.

Article  PubMed  PubMed Central  Google Scholar 

Ke Y, Xu Y, Chen X, Feng S, Liu Z, Sun Y, Yao X, Li F, Zhu W, Gao L. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell. 2017;170:367–81.

Article  CAS  PubMed  Google Scholar 

Feng S, Cokus S, Schubert V, Zhai J, Pellegrini M, Jacobsen S. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis Mol Cell. 2014;55:694–707.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong P, Tu X, Chu P-Y, Lü P, Zhu N, Grierson D, Du B, Li P, Zhong S. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol Plant. 2017;10:1497–509.

Article  CAS  PubMed  Google Scholar 

Liu C. In situ Hi-C library preparation for plants to study their Three-Dimensional Chromatin Interactions on a genome-wide scale. Methods Mol Biol. 2017;1629:15566.

Google Scholar 

Sotelo-Silveira M, Chávez Montes RA, Sotelo-Silveira JR, Marsch-Martínez N, de Folter S. Entering the next dimension: plant genomes in 3D. Trends Plant Sci. 2018;23:598–612.

Article  CAS  PubMed  Google Scholar 

Grob S, Grossniklaus U. Invasive DNA elements modify the nuclear architecture of their insertion site by KNOT-linked silencing in Arabidopsis thaliana Genome Biol. 2019;20:120.

Article  PubMed  PubMed Central  Google Scholar 

Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature. 2009;462:58–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon J, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu J, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng H, Xie W. The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol. 2019;20:535–50.

Article  CAS  PubMed  Google Scholar 

Hug CB, Grimaldi AG, Kruse K, Vaquerizas JM. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell. 2017;169:216–28.

Article  CAS  PubMed  Google Scholar 

Torosin NS, Anand A, Golla TR, Cao W, Ellison CE. 3D genome evolution and reorganization in the Drosophila melanogaster species group. PLoS Genet. 2020;16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fishman V, Battulin N, Nuriddinov M, Maslova A, Zlotina A, Strunov A, Chervyakova D, Korablev A, Serov O, Krasikova A. 3D organization of chicken genome demonstrates evolutionary conservation of topologically associated domains and highlights unique architecture of erythrocytes' chromatin. Nucleic Acids Res. 2019;47:648–65.

Article  CAS  PubMed  Google Scholar 

Krefting J, Andrade-Navarro MA, Ibn-Salem J. Evolutionary stability of topologically associating domains is associated with conserved gene regulation. BMC Biol. 2018;16:87.

Article  PubMed  PubMed Central  Google Scholar 

Lukyanchikova V, Nuriddinov M, Belokopytova P, Taskina A, Liang J, Reijnders M, Ruzzante L, Feron R, Waterhouse RM, Wu Y, et al. Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat Commun. 2022;13:1960.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corbo M, Damas J, Bursell MG, Lewin HA. Conservation of chromatin conformation in carnivores. Proc Natl Acad Sci U S A. 2022;119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wendel JF, Brubaker C, Seelanan T. The Origin and Evolution of Gossypium In: Physiology of Cotton. 2009. p. 1–18.

Google Scholar 

Grover CE, Arick MA 2nd, Conover JL, Thrash A, Hu G, Sanders WS, Hsu CY, Naqvi RZ, Farooq M, Li X, et al. Comparative genomics of an unusual biogeographic disjunction in the cotton tribe (Gossypieae) yields insights into genome downsizing. Genome Biol Evol. 2017;9:3328–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Udall JA, Long E, Ramaraj T, Conover JL, Yuan D, Grover CE, Gong L, Arick MA II, Masonbrink RE, Peterson DG, Wendel JF. The genome sequence of Gossypioides kirkii Illustrates a descending dysploidy in plants. Front Plant Sci. 2019;10:1541.

Article  PubMed  PubMed Central  Google Scholar 

Wendel JF, Grover CE. Taxonomy and evolution of the cotton genus, Gossypium In: Cotton. 2015. p. 25–44.

Chapter  Google Scholar 

Hu G, Grover CE, Jareczek J, Yuan D, Dong Y, Miller E, Conover JL, Wendel JF. Correction to: evolution and diversity of the cotton genome. In Cotton Precision Breeding. Rahman Mu, Zafar Y, Zhang T, editors. Cham: Springer International Publishing; 2021. p. C1. https://doi.org/10.1007/978-3-030-64504-5_18.

Gerstel DU. Chromosomal translocations in interspecific hybrids of the genus Gossypium Evolution. 1953;7:233–4.

Article  Google Scholar 

Huang G, Wu Z, Percy RG, Bai M, Zhu Y. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat Genet. 2020;52:516–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Udall JA, Long E, Hanson C, Yuan D, Ramaraj T, Conover JL, Gong L, Arick MA, Grover CE, Peterson DG, Wendel JF. De novo genome sequence assemblies of Gossypium raimondii and Gossypium turneri G3 (Bethesda). 2019;9:3079–85.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif