Shaping the brain vasculature in development and disease in the single-cell era

Mink, J. W., Blumenschine, R. J. & Adams, D. B. Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol. 241, R203–R212 (1981).

CAS  PubMed  Google Scholar 

Zlokovic, B. V. & Apuzzo, M. L. Strategies to circumvent vascular barriers of the central nervous system. Neurosurgery 43, 877–878 (1998).

Article  CAS  PubMed  Google Scholar 

Wälchli, T. et al. Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nat. Protoc. 10, 53–74 (2015). This study describes a method allowing the visualization and quantitative assessment of angiogenesis, ETCs and perfused blood vessels in the postnatal mouse brain.

Article  PubMed  Google Scholar 

Zlokovic, B. V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008). This review provides an in-depth exploration of BBB integrity, its cellular and molecular composition, and its disruption in neurodegenerative disorders such as Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis and multiple sclerosis.

Article  CAS  PubMed  Google Scholar 

Stewart, P. A. & Wiley, M. J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev. Biol. 84, 183–192 (1981).

Article  CAS  PubMed  Google Scholar 

Vasudevan, A., Long, J. E., Crandall, J. E., Rubenstein, J. L. & Bhide, P. G. Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat. Neurosci. 11, 429–439 (2008). This study demonstrates that telencephalic angiogenesis in mice progresses along a spatial, ventral-to-dorsal gradient regulated by compartment-specific homeobox transcription factors in addition to passive sprouting into the brain parenchyma upon metabolic needs.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komsany, A. & Pezzella, F. in Tumor Vascularization (eds Ribatti, D. & Pezzella, F.) 113–127 (Academic Press, 2020).

Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wälchli, T. et al. Wiring the vascular network with neural cues: a CNS perspective. Neuron 87, 271–296 (2015). This review focuses on the regulatory effects of molecules involved in the NVL on angiogenesis in both peripheral tissues and the CNS, while distinguishing between general and CNS-specific cues for angiogenesis.

Article  PubMed  Google Scholar 

Muoio, V., Persson, P. B. & Sendeski, M. M. The neurovascular unit – concept review. Acta Physiol. 210, 790–798 (2014).

Article  CAS  Google Scholar 

Eichmann, A. & Thomas, J. L. Molecular parallels between neural and vascular development. Cold Spring Harb. Perspect. Med. 3, a006551 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jain, R. K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26, 605–622 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paredes, I., Himmels, P. & Ruiz de Almodovar, C. Neurovascular communication during CNS development. Dev. Cell 45, 10–32 (2018).

Article  CAS  PubMed  Google Scholar 

Quaegebeur, A., Lange, C. & Carmeliet, P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 71, 406–424 (2011).

Article  CAS  PubMed  Google Scholar 

Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

Article  CAS  PubMed  Google Scholar 

Wälchli, T. et al. Nogo-A is a negative regulator of CNS angiogenesis. Proc. Natl Acad. Sci. USA 110, E1943 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

Article  CAS  PubMed  Google Scholar 

Ferguson, J. E. 3rd, Kelley, R. W. & Patterson, C. Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arterioscler. Thromb. Vasc. Biol. 25, 2246–2254 (2005).

Article  CAS  PubMed  Google Scholar 

Ricci-Vitiani, L. et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824–828 (2010). This study shows that a variable number of endothelial cells in glioblastoma carry the same genomic alteration as tumour cells, indicating that a significant portion of the vascular endothelium is of neoplastic origin, describing a new mechanism for tumour vasculogenesis that may explain the presence of cancer-derived endothelial-like cells in several malignancies.

Article  CAS  PubMed  Google Scholar 

Wang, R. et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468, 829–833 (2010). This study demonstrates that a subpopulation of glioblastoma-derived ECs harbour the same somatic mutations identified in tumour cells and shows that the stem-cell-like CD133+fraction includes a subset of VE-cadherin-expressing cells, indicative of transdifferentiation of tumour-derived stem cells into EPCs capable of maturing into ECs, thereby contributing to the tumour vasculature.

Article  CAS  PubMed  Google Scholar 

Cheng, L. et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139–152 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

Article  CAS  PubMed  Google Scholar 

Jain, R. K. & Carmeliet, P. SnapShot: tumor angiogenesis. Cell 149, 1408–1408.e1401 (2012).

Article  CAS  PubMed  Google Scholar 

Hardee, M. E. & Zagzag, D. Mechanisms of glioma-associated neovascularization. Am. J. Pathol. 181, 1126–1141 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boire, A., Brastianos, P. K., Garzia, L. & Valiente, M. Brain metastasis. Nat. Rev. Cancer 20, 4–11 (2020).

Article  CAS  PubMed  Google Scholar 

Vallon, M., Chang, J., Zhang, H. & Kuo, C. J. Developmental and pathological angiogenesis in the central nervous system. Cell. Mol. Life Sci. 71, 3489–3506 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, H. W. et al. Role of venous endothelial cells in developmental and pathologic angiogenesis. Circulation 144, 1308–1322 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hellstrom, M., Phng, L. K. & Gerhardt, H. VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh. Migr. 1, 133–136 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Blanco, R. & Gerhardt, H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med. 3, a006569 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Xue, Y. et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum. Mol. Genet. 8, 723–730 (1999).

Article  CAS  PubMed  Google Scholar 

Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943–953 (2010). This study illustrates that ECs compete for the tip cell position through relative levels of VEGFR1 and VEGFR2, in the presence of Notch-modulated DLL4 expression.

Article  CAS  PubMed  Google Scholar 

Bentley, K. et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat. Cell Biol. 16, 309–321 (2014).

Article  CAS  PubMed  Google Scholar 

Pitulescu, M. E. et al. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat. Cell Biol. 19, 915–927 (2017).

Article  CAS  PubMed  Google Scholar 

Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

Article  PubMed  Google Scholar 

Shah, A. V. et al. The endothelial transcription factor ERG mediates angiopoietin-1-dependent control of Notch signalling and vascular stability. Nat. Commun. 8, 16002 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

Article  CAS  PubMed  Google Scholar 

Herbert, S. P. & Stainier, D. Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 551–564 (2011).

Article  CAS 

留言 (0)

沒有登入
gif