Spatiotemporal expression patterns of genes coding for plasmalemmal chloride transporters and channels in neurological diseases

Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev. 2023;103(2):1095–135. https://doi.org/10.1152/physrev.00025.2021.

Article  CAS  PubMed  Google Scholar 

Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci. 2014;15(10):637–54. https://doi.org/10.1038/nrn3819.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blaesse P, Airaksinen MS, Rivera C, Kaila K. Cation-chloride cotransporters and neuronal function. Neuron. 2009;61(6):820–38. https://doi.org/10.1016/j.neuron.2009.03.003.

Article  CAS  PubMed  Google Scholar 

Virtanen MA, Uvarov P, Mavrovic M, Poncer JC, Kaila K. The multifaceted roles of KCC2 in cortical development. Trends Neurosci. 2021;44(5):378–92. https://doi.org/10.1016/j.tins.2021.01.004.

Article  CAS  PubMed  Google Scholar 

Peerboom C, Wierenga CJ. The postnatal GABA shift: a developmental perspective. Neurosci Biobehav Rev. 2021;124:179–92. https://doi.org/10.1016/j.neubiorev.2021.01.024.

Article  CAS  PubMed  Google Scholar 

Ge S, Pradhan DA, Ming G-L, Song H. GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci. 2007;30(1):1–8.

Article  PubMed  Google Scholar 

Giachino C, Barz M, Tchorz JS, Tome M, Gassmann M, Bischofberger J, et al. GABA suppresses neurogenesis in the adult hippocampus through GABAB receptors. Development. 2014;141(1):83–90. https://doi.org/10.1242/dev.102608.

Article  CAS  PubMed  Google Scholar 

Sedmak G, Jovanov-Milosevic N, Puskarjov M, Ulamec M, Kruslin B, Kaila K, et al. Developmental expression patterns of KCC2 and functionally associated molecules in the human brain. Cereb Cortex. 2016;26(12):4574–89. https://doi.org/10.1093/cercor/bhv218.

Article  PubMed  Google Scholar 

Medina I, Chudotvorova I. GABA neurotransmission and neural cation-chloride co-transporters: actions beyond ion transport. Crit Rev Neurobiol. 2006;18(1–2):105–12.

Article  CAS  PubMed  Google Scholar 

Singh AK, Venglarik CJ, Bridges RJ. Development of chloride channel modulators. Kidney Int. 1995;48(4):985–93.

Article  CAS  PubMed  Google Scholar 

De Koninck Y. Altered chloride homeostasis in neurological disorders: a new target. Curr Opin Pharmacol. 2007;7(1):93–9.

Article  PubMed  Google Scholar 

Raveendran VA, Pressey JC, Woodin MA. A novel small molecule targets NKCC1 To restore synaptic inhibition. Trends Pharmacol Sci. 2020;41(12):897–9. https://doi.org/10.1016/j.tips.2020.10.002.

Article  CAS  PubMed  Google Scholar 

Merlin LR. Chloride’s exciting role in neonatal seizures suggests novel therapeutic approach. Epilepsy Curr. 2011;11(3):92–3. https://doi.org/10.5698/1535-7511-11.3.92.

Article  PubMed  PubMed Central  Google Scholar 

Kalkman HO. Alterations in the expression of neuronal chloride transporters may contribute to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):410–4. https://doi.org/10.1016/j.pnpbp.2011.01.004.

Article  CAS  PubMed  Google Scholar 

Doyon N, Vinay L, Prescott SA, De Koninck Y. Chloride regulation: a dynamic equilibrium crucial for synaptic inhibition. Neuron. 2016;89(6):1157–72. https://doi.org/10.1016/j.neuron.2016.02.030.

Article  CAS  PubMed  Google Scholar 

Miller JA, Ding S-L, Sunkin SM, Smith KA, Ng L, Szafer A, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508(7495):199–206. https://doi.org/10.1038/nature13185.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. Conserved cell types with divergent features in human versus mouse cortex. Nature. 2019;573(7772):61–8. https://doi.org/10.1038/s41586-019-1506-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song L, Pan S, Zhang Z, Jia L, Chen W-H, Zhao X-M. STAB: a spatio-temporal cell atlas of the human brain. Nucleic Acids Res. 2021;49(D1):D1029–37. https://doi.org/10.1093/nar/gkaa762.

Article  CAS  PubMed  Google Scholar 

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202. https://doi.org/10.1016/j.molp.2020.06.009.

Article  CAS  PubMed  Google Scholar 

Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinform. 2006;7:191.

Article  Google Scholar 

Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48(D1):D845–55. https://doi.org/10.1093/nar/gkz1021.

Article  CAS  PubMed  Google Scholar 

Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489(7416):391–9. https://doi.org/10.1038/nature11405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of human functional neuroimaging data. Nat Methods. 2011;8(8):665–70. https://doi.org/10.1038/nmeth.1635.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hendrickx DAE, van Scheppingen J, van der Poel M, Bossers K, Schuurman KG, van Eden CG, et al. Gene expression profiling of multiple sclerosis pathology identifies early patterns of demyelination surrounding chronic active lesions. Front Immunol. 2017;8:1810. https://doi.org/10.3389/fimmu.2017.01810.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conte G, Parras A, Alves M, Ollà I, De Diego-Garcia L, Beamer E, et al. High concordance between hippocampal transcriptome of the mouse intra-amygdala kainic acid model and human temporal lobe epilepsy. Epilepsia. 2020;61(12):2795–810. https://doi.org/10.1111/epi.16714.

Article  CAS  PubMed  Google Scholar 

Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature. 2011;478(7370):483–9. https://doi.org/10.1038/nature10523.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong S, Zhang S, Fan X, Wu Q, Yan L, Dong J, et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature. 2018;555(7697):524–8. https://doi.org/10.1038/nature25980.

Article  CAS  PubMed  Google Scholar 

Polioudakis D, de la Torre-Ubieta L, Langerman J, Elkins AG, Shi X, Stein JL, et al. A single-cell transcriptomic atlas of human neocortical development during mid-gestation. Neuron. 2019. https://doi.org/10.1016/j.neuron.2019.06.011.

Article  PubMed  PubMed Central  Google Scholar 

Skutella T, Nitsch R. New molecules for hippocampal development. Trends Neurosci. 2001;24(2):107–13.

Article  CAS  PubMed  Google Scholar 

Gene OC. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43(Database issue):D1049–56. https://doi.org/10.1093/nar/gku1179.

Article  CAS  Google Scholar 

Zhang S, Zhou J, Zhang Y, Liu T, Friedel P, Zhuo W, et al. The structural basis of function and regulation of neuronal cotransporters NKCC1 and KCC2. Commun Biol. 2021;4(1):226. https://doi.org/10.1038/s42003-021-01750-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered expression of ion channels in white matter lesions of progressive multiple sclerosis: what do we know about their function? Front Cell Neurosci. 2021;15: 685703. https://doi.org/10.3389/fncel.2021.685703.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Auer T, Schreppel P, Erker T, Schwarzer C. Impaired chloride homeostasis in epilepsy: molecular basis, impact on treatment, and current treatment approaches. Pharmacol Ther. 2020;205: 107422. https://doi.org/10.1016/j.pharmthera.2019.107422.

Article  CAS  PubMed  Google Scholar 

Reh RK, Dias BG, Nelson CA, Kaufer D, Werker JF, Kolb B, et al. Critical period regulation across multiple timescales. Proc Natl Acad Sci U S A. 2020;117(38):23242–51. https://doi.org/10.1073/pnas.1820836117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva CG, Peyre E, Adhikari MH, Tielens S, Tanco S, Van Damme P, et al. Cell-intrinsic control of interneuron migration drives cortical morphogenesis. Cell. 2018. https://doi.org/10.1016/j.cell.2018.01.031.

Article  PubMed 

留言 (0)

沒有登入
gif