Development of Drug Release Model for Suspensions in ESCAR (Emulator of SubCutaneous Absorption and Release)

Dubbelboer IR, Sjögren E. Overview of authorized drug products for subcutaneous administration: pharmaceutical, therapeutic, and physicochemical properties. Eur J Pharm Sci. 2022;173:106181.

Article  CAS  PubMed  Google Scholar 

Flexner C, Owen A, Siccardi M, Swindells S. Long-acting drugs and formulations for the treatment and prevention of HIV infection. Int J Antimicrob Agents. 2021;57(1):106220.

Article  CAS  PubMed  Google Scholar 

Chen W, Yung BC, Qian Z, Chen X. Improving long-term subcutaneous drug delivery by regulating material-bioenvironment interaction. Adv Drug Deliv Rev. 2018;127:20–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lynch PM, Butler J, Huerta D, Tsals I, Davidson D, Hamm S. A Pharmacokinetic and tolerability evaluation of two continuous subcutaneous infusion systems compared to an oral controlled-release morphine. J Pain Symptom Manage. 2000;19(5):348–56.

Article  Google Scholar 

Jones GB, Collins DS, Harrison MW, Thyagarajapuram NR, Wright JM. Subcutaneous drug delivery: an evolving enterprise. Sci Transl Med. 2017;9(405):eaaf9166.

Article  PubMed  Google Scholar 

Mathaes R, Koulov A, Joerg S, Mahler H-C. Subcutaneous injection volume of biopharmaceuticals—pushing the boundaries. J Pharm Sci. 2016;105(8):2255–9.

Article  CAS  PubMed  Google Scholar 

Sigfridsson K, Lundqvist A, Strimfors M. Subcutaneous administration of nano- and microsuspensions of poorly soluble compounds to rats. Drug Dev Ind Pharm. 2014;40(4):511–8.

Article  CAS  PubMed  Google Scholar 

Chiang P-C, Nagapudi K, Fan PW, Liu J. Investigation of drug delivery in rats via subcutaneous injection: case study of pharmacokinetic modeling of suspension formulations. J Pharm Sci. 2019;108(1):109–19.

Article  CAS  PubMed  Google Scholar 

Chiang P-C, Ran Y, Chou K-J, Cui Y, Wong H. Investigation of utilization of nanosuspension formulation to enhance exposure of 1,3-dicyclohexylurea in rats: preparation for PK/PD study via subcutaneous route of nanosuspension drug delivery. Nanoscale Res Lett. 2011;6(1):413.

Article  PubMed  PubMed Central  Google Scholar 

Sigfridsson K, Rydberg H, Strimfors M. Nano- and microcrystals of griseofulvin subcutaneously administered to rats resulted in improved bioavailability and sustained release. Drug Dev Ind Pharm. 2019;45(9):1477–86.

Article  CAS  PubMed  Google Scholar 

Sigfridsson K, Xue A, Goodwin K, Fretland AJ, Arvidsson T. Sustained release and improved bioavailability in mice after subcutaneous administration of griseofulvin as nano- and microcrystals. Int J Pharm. 2019;566:565–72.

Article  CAS  PubMed  Google Scholar 

Li D, Chow PY, Lin TP, Cheow C, Li Z, Wacker MG. Simulate SubQ: the methods and the media. J Pharm Sci. 2021 (In Press).

McDonald TA, Zepeda ML, Tomlinson MJ, Bee WH, Ivens IA. Subcutaneous administration of biotherapeutics: current experience in animal models. Curr Opin Mol Ther. 2010;12(4):461–70.

CAS  PubMed  Google Scholar 

Thomas VA, Balthasar JP. Understanding inter-individual variability in monoclonal antibody disposition. Antibodies. 2019;8(4):56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao GF, Ashtikar M, Kojima R, Yoshida T, Kaihara M, Tajiri T, et al. Predicting drug release and degradation kinetics of long-acting microsphere formulations of tacrolimus for subcutaneous injection. J Control Release. 2021;329:372–84.

Article  CAS  PubMed  Google Scholar 

Gao GF, Thurn M, Wendt B, Parnham MJ, Wacker MG. A sensitive in vitro performance assay reveals the in vivo drug release mechanisms of long-acting medroxyprogesterone acetate microparticles. Int J Pharm. 2020;586:119540.

Article  CAS  PubMed  Google Scholar 

Kinnunen HM, Sharma V, Contreras-Rojas LR, Yu Y, Alleman C, Sreedhara A, et al. A novel in vitro method to model the fate of subcutaneously administered biopharmaceuticals and associated formulation components. J Control Release. 2015;214:94–102.

Article  CAS  PubMed  Google Scholar 

Bown HK, Bonn C, Yohe S, Yadav DB, Patapoff TW, Daugherty A, et al. In vitro model for predicting bioavailability of subcutaneously injected monoclonal antibodies. J Control Release. 2018;273:13–20.

Article  CAS  PubMed  Google Scholar 

Bock F, Lin E, Larsen C, Jensen H, Huus K, Larsen SW, et al. Towards in vitro in vivo correlation for modified release subcutaneously administered insulins. Eur J Pharm Sci. 2020;145:105239.

Article  CAS  PubMed  Google Scholar 

Leung DH, Kapoor Y, Alleyne C, Walsh E, Leithead A, Habulihaz B, et al. Development of a convenient in vitro gel diffusion model for predicting the in vivo performance of subcutaneous parenteral formulations of large and small molecules. AAPS PharmSciTech. 2017;18(6):2203–13.

Article  CAS  PubMed  Google Scholar 

Torres-Terán I, Venczel M, Klein S. Prediction of subcutaneous drug absorption - do we have reliable data to design a simulated interstitial fluid? Int J Pharm. 2021;610:121257.

Article  PubMed  Google Scholar 

Lou H, Hageman MJ. Development of an in vitro system to emulate an in vivo subcutaneous environment: small molecule drug assessment. Mol Pharm. 2022;19(11):4017–25.

Article  CAS  PubMed  Google Scholar 

Rasenack N, Müller BW. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm Res. 2002;19(12):1894–900.

Article  CAS  PubMed  Google Scholar 

Rasenack N, Müller BW. Micron-Size drug particles: common and novel micronization techniques. Pharm Dev Technol. 2004;9(1):1–13.

Article  CAS  PubMed  Google Scholar 

Rasenack N, Steckel H, Müller BW. Preparation of microcrystals by in situ micronization. Powder Technol. 2004;143–144:291–6.

Article  Google Scholar 

Malamatari M, Taylor KMG, Malamataris S, Douroumis D, Kachrimanis K. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discovery Today. 2018;23(3):534–47.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif