Brain Leukocytes as the Potential Therapeutic Target for Post-COVID-19 Brain Fog

Nalbandian A, Sehgal K, Gupta A et al (2021) Post-acute COVID-19 syndrome. Nat Med 27:601–615

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin Y, Wu Y, Zhong P, Hou B, Liu J, Chen Y, Liu J (2021) A clinical staging proposal of the disease course over time in non-severe patients with coronavirus disease 2019. Sci Rep 11:10681

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conway EM, Mackman N, Warren RQ, Wolberg AS, Mosnier LO, Campbell RA, Gralinski LE, Rondina MT, van de Veerdonk FL, Hoffmeister KM, Griffin JH, Nugent D, Moon K, Morrissey JH (2022) Understanding COVID-19-associated coagulopathy. Nat Rev Immunol 22:639–649

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arish M, Qian W, Narasimhan H, Sun J (2023) COVID-19 immunopathology: from acute diseases to chronic sequelae. J Med Virol 95:e28122

Article  CAS  PubMed  Google Scholar 

Stefanou MI, Palaiodimou L, Bakola E, Smyrnis N, Papadopoulou M, Paraskevas GP, Rizos E, Boutati E, Grigoriadis N, Krogias C, Giannopoulos S, Tsiodras S, Gaga M, Tsivgoulis G (2022) Neurological manifestations of long-COVID syndrome: a narrative review. Ther Adv Chronic Dis 13:20406223221076890

Article  PubMed  PubMed Central  Google Scholar 

Crook H, Raza S, Nowell J, Young M, Edison P (2021) Long covid-mechanisms, risk factors, and management. BMJ 374:n1648

Article  PubMed  Google Scholar 

Monje M, Iwasaki A (2022) The neurobiology of long COVID. Neuron 110:3484–3496

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnan K, Lin Y, Prewitt KM, Potter DA (2022) Multidisciplinary approach to brain fog and related persisting symptoms post COVID-19. J Health Serv Psychol 48:31–38

Article  PubMed  PubMed Central  Google Scholar 

Jegal KH, Yoon J, Kim S, Jang S, Jin YH, Lee JH, Choi SM, Kim TH, Kwon S (2022) Herbal medicines for post-acute sequelae (fatigue or cognitive dysfunction) of SARS-CoV-2 infection: a phase 2 pilot clinical study protocol. Healthcare (Basel). 10:1839

Article  PubMed  PubMed Central  Google Scholar 

Venkataramani V, Winkler F (2022) Cognitive deficits in long Covid-19. N Engl J Med 387:1813–1815

Article  CAS  PubMed  Google Scholar 

Hugon J, Msika EF, Queneau M, Farid K, Paquet C (2022) Long COVID: cognitive complaints (brain fog) and dysfunction of the cingulate cortex. J Neurol 269:44–46

Article  CAS  PubMed  Google Scholar 

Borsini A, Merrick B, Edgeworth J, Mandal G, Srivastava DP, Vernon AC, Nebbia G, Thuret S, Pariante CM (2022) Neurogenesis is disrupted in human hippocampal progenitor cells upon exposure to serum samples from hospitalized COVID-19 patients with neurological symptoms. Mol Psychiatry 27:5049–5061

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milan A, Salles P, Pelayo C, Uribe-San-Martin R (2022) Acute to chronic electro-clinical manifestations of neuro-COVID and the long-haul consequences in people with epilepsy: a review. Cureus 14:e26020

PubMed  PubMed Central  Google Scholar 

Lou JJ, Movassaghi M, Gordy D, Olson MG, Zhang T, Khurana MS, Chen Z, Perez-Rosendahl M, Thammachantha S, Singer EJ, Magaki SD, Vinters HV, Yong WH (2021) Neuropathology of COVID-19 (neuro-COVID): clinicopathological update. Free Neuropathol 2:2

PubMed  PubMed Central  Google Scholar 

Thakur KT, Miller EH, Glendinning MD et al (2021) COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 144:2696–2708

Article  PubMed  PubMed Central  Google Scholar 

Troscher AR, Wimmer I, Quemada-Garrido L, Kock U, Gessl D, Verberk SGS, Martin B, Lassmann H, Bien CG, Bauer J (2019) Microglial nodules provide the environment for pathogenic T cells in human encephalitis. Acta Neuropathol 137:619–635

Article  PubMed  PubMed Central  Google Scholar 

Kazama I. Physiological significance of delayed rectifier K(+) channels (Kv1.3) expressed in T lymphocytes and their pathological significance in chronic kidney disease. J Physiol Sci. 2015;65:25–35.

Fordyce CB, Jagasia R, Zhu X, Schlichter LC (2005) Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci 25:7139–7149

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kazama I, Baba A, Matsubara M, Endo Y, Toyama H, Ejima Y (2014) Benidipine suppresses in situ proliferation of leukocytes and slows the progression of renal fibrosis in rat kidneys with advanced chronic renal failure. Nephron Exp Nephrol 128:67–79

Article  CAS  PubMed  Google Scholar 

Kazama I (2015) Roles of lymphocyte Kv1.3-channels in gut mucosal immune system: novel therapeutic implications for inflammatory bowel disease. Med Hypotheses 85:61–63

Article  CAS  PubMed  Google Scholar 

Wang X, Li G, Guo J, Zhang Z, Zhang S, Zhu Y, Cheng J, Yu L, Ji Y, Tao J (2019) Kv1.3 channel as a key therapeutic target for neuroinflammatory diseases: state of the art and beyond. Front Neurosci 13:1393

Article  PubMed  Google Scholar 

Sato Y, Kuwana R, Kazama I (2022) Suppressing leukocyte Kv1.3-channels by commonly used drugs: a novel therapeutic target for schizophrenia? Drug Discov Ther. 16:93–95

Article  CAS  PubMed  Google Scholar 

Glynne P, Tahmasebi N, Gant V, Gupta R (2022) Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines. J Investig Med 70:61–67

Article  PubMed  Google Scholar 

Shaffer L (2022) Lots of long COVID treatment leads, but few are proven. Proc Natl Acad Sci U S A 119:e2213524119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ajmone-Cat MA, Bernardo A, Greco A, Minghetti L (2010) Non-steroidal anti-inflammatory drugs and brain inflammation: effects on microglial functions. Pharmaceuticals (Basel) 3:1949–1965

Article  CAS  PubMed  Google Scholar 

Kazama I, Maruyama Y, Murata Y (2012) Suppressive effects of nonsteroidal anti-inflammatory drugs diclofenac sodium, salicylate and indomethacin on delayed rectifier K+-channel currents in murine thymocytes. Immunopharmacol Immunotoxicol 34:874–878

Article  CAS  PubMed  Google Scholar 

Kazama I, Baba A, Maruyama Y (2014) HMG-CoA reductase inhibitors pravastatin, lovastatin and simvastatin suppress delayed rectifier K(+)-channel currents in murine thymocytes. Pharmacol Rep 66:712–717

Article  CAS  PubMed  Google Scholar 

Saito K, Abe N, Toyama H, Ejima Y, Yamauchi M, Mushiake H, Kazama I (2019) Second-generation histamine H1 receptor antagonists suppress delayed rectifier K(+)-channel currents in murine thymocytes. Biomed Res Int 2019:6261951

Article  PubMed  PubMed Central  Google Scholar 

Baba A, Tachi M, Maruyama Y, Kazama I (2015) Suppressive effects of diltiazem and verapamil on delayed rectifier K(+)-channel currents in murine thymocytes. Pharmacol Rep 67:959–964

Article  CAS  PubMed  Google Scholar 

Kazama I, Maruyama Y (2013) Differential effects of clarithromycin and azithromycin on delayed rectifier K(+)-channel currents in murine thymocytes. Pharm Biol 51:760–765

Article  CAS  PubMed  Google Scholar 

Kazama I, Tamada T, Tachi M (2015) Usefulness of targeting lymphocyte Kv1.3-channels in the treatment of respiratory diseases. Inflamm Res 64:753–765

Article  CAS  PubMed  Google Scholar 

Theoharides TC, Cholevas C, Polyzoidis K, Politis A (2021) Long-COVID syndrome-associated brain fog and chemofog: luteolin to the rescue. BioFactors 47:232–241

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baba A, Tachi M, Maruyama Y, Kazama I (2015) Olopatadine inhibits exocytosis in rat peritoneal mast cells by counteracting membrane surface deformation. Cell Physiol Biochem 35:386–396

Article  CAS  PubMed  Google Scholar 

Baba A, Tachi M, Ejima Y, Endo Y, Toyama H, Matsubara M, Saito K, Yamauchi M, Miura C, Kazama I (2016) Anti-allergic drugs tranilast and ketotifen dose-dependently exert mast cell-stabilizing properties. Cell Physiol Biochem 38:15–27

Article  CAS  PubMed  Google Scholar 

Mori T, Abe N, Saito K, Toyama H, Endo Y, Ejima Y, Yamauchi M, Goto M, Mushiake H, Kazama I (2016) Hydrocortisone and dexamethasone dose-dependently stabilize mast cells derived from rat peritoneum. Pharmacol Rep 68:1358–1365

Article  CAS  PubMed  Google Scholar 

Kazama I, Saito K, Baba A, Mori T, Abe N, Endo Y, Toyama H, Ejima Y, Matsubara M, Yamauchi M (2016) Clarithromycin dose-dependently stabilizes rat peritoneal mast cells. Chemotherapy 61:295–303

Article  CAS  PubMed 

留言 (0)

沒有登入
gif