Overview Article Astrocytes as Initiators of Epilepsy

Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016

Article  CAS  PubMed  Google Scholar 

Escartin C, Galea E, Lakatos A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. https://doi.org/10.1038/s41593-020-00783-4

Article  PubMed  PubMed Central  Google Scholar 

Mathern GW, Babb TL, Vickrey BG et al (1995) The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy. Brain 118:105–118. https://doi.org/10.1093/brain/118.1.105

Article  PubMed  Google Scholar 

Clossen BL, Reddy DS (2017) Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta BBA - Mol Basis Dis 1863:1519–1538. https://doi.org/10.1016/j.bbadis.2017.02.003

Article  CAS  Google Scholar 

Löscher W, Schmidt D (2011) Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52:657–678. https://doi.org/10.1111/j.1528-1167.2011.03024.x

Article  PubMed  Google Scholar 

Bedner P, Dupper A, Hüttmann K et al (2015) Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138:1208–1222. https://doi.org/10.1093/brain/awv067

Article  PubMed  PubMed Central  Google Scholar 

Rusina E, Bernard C, Williamson A (2021) The Kainic Acid Models of Temporal Lobe Epilepsy. https://doi.org/10.1523/ENEURO.0337-20.2021. eNeuro 8:

Jefferys J, Steinhäuser C, Bedner P (2016) Chemically-induced TLE models: Topical application. J Neurosci Methods 260:53–61. https://doi.org/10.1016/j.jneumeth.2015.04.011

Article  CAS  PubMed  Google Scholar 

Bedner P, Jabs R, Steinhäuser C (2020) Properties of human astrocytes and NG2 glia. Glia 68:756–767. https://doi.org/10.1002/glia.23725

Article  PubMed  Google Scholar 

Orkand RK (1986) Introductory Remarks: Glial-Interstitial Fluid Exchange. Ann N Y Acad Sci 481:269–272. https://doi.org/10.1111/j.1749-6632.1986.tb27157.x

Article  CAS  PubMed  Google Scholar 

Heinemann U, Gabriel S, Jauch R et al (2000) Alterations of Glial Cell Function in Temporal Lobe Epilepsy. Epilepsia 41:S185–S189. https://doi.org/10.1111/j.1528-1157.2000.tb01579.x

Article  PubMed  Google Scholar 

Jauch R, Windmüller O, Lehmann T-N et al (2002) Effects of barium, furosemide, ouabaine and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) on ionophoretically-induced changes in extracellular potassium concentration in hippocampal slices from rats and from patients with epilepsy. Brain Res 925:18–27. https://doi.org/10.1016/S0006-8993(01)03254-1

Article  CAS  PubMed  Google Scholar 

Kivi A, Lehmann T-N, Kovács R et al (2000) Effects of barium on stimulus-induced rises of [K+]o in human epileptic non-sclerotic and sclerotic hippocampal area CA1. Eur J Neurosci 12:2039–2048. https://doi.org/10.1046/j.1460-9568.2000.00103.x

Article  CAS  PubMed  Google Scholar 

Hinterkeuser S, Schröder W, Hager G et al (2000) Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 12:2087–2096. https://doi.org/10.1046/j.1460-9568.2000.00104.x

Article  CAS  PubMed  Google Scholar 

Schröder W, Hinterkeuser S, Seifert G et al (2000) Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia 41(Suppl 6):S181–184

Article  PubMed  Google Scholar 

Bordey A, Sontheimer H (1998) Electrophysiological Properties of Human Astrocytic Tumor Cells In Situ: Enigma of Spiking Glial Cells. J Neurophysiol 79:2782–2793. https://doi.org/10.1152/jn.1998.79.5.2782

Article  CAS  PubMed  Google Scholar 

Heuser K, Eid T, Lauritzen F et al (2012) Loss of Perivascular Kir4.1 Potassium Channels in the Sclerotic Hippocampus of Patients With Mesial Temporal Lobe Epilepsy. J Neuropathol Exp Neurol 71:814–825. https://doi.org/10.1097/NEN.0b013e318267b5af

Article  CAS  PubMed  Google Scholar 

Kitaura H, Shirozu H, Masuda H et al (2018) Pathophysiological Characteristics Associated With Epileptogenesis in Human Hippocampal Sclerosis. EBioMedicine 29:38–46. https://doi.org/10.1016/j.ebiom.2018.02.013

Article  PubMed  PubMed Central  Google Scholar 

Das A, Wallace GC, Holmes C et al (2012) Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience 220:237–246. https://doi.org/10.1016/j.neuroscience.2012.06.002

Article  CAS  PubMed  Google Scholar 

Buono RJ, Lohoff FW, Sander T et al (2004) Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res 58:175–183. https://doi.org/10.1016/j.eplepsyres.2004.02.003

Article  CAS  PubMed  Google Scholar 

Heuser K, Nagelhus EA, Taubøll E et al (2010) Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy. Epilepsy Res 88:55–64. https://doi.org/10.1016/j.eplepsyres.2009.09.023

Article  CAS  PubMed  Google Scholar 

Chever O, Djukic B, McCarthy KD, Amzica F (2010) Implication of Kir4.1 Channel in Excess Potassium Clearance: An In Vivo Study on Anesthetized Glial-Conditional Kir4.1 Knock-Out Mice. J Neurosci 30:15769–15777. https://doi.org/10.1523/JNEUROSCI.2078-10.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haj-Yasein NN, Jensen V, Vindedal GF et al (2011) Evidence that compromised K + spatial buffering contributes to the epileptogenic effect of mutations in the human kir4.1 gene (KCNJ10). Glia 59:1635–1642. https://doi.org/10.1002/glia.21205

Article  PubMed  Google Scholar 

David Y, Cacheaux LP, Ivens S et al (2009) Astrocytic Dysfunction in Epileptogenesis: Consequence of Altered Potassium and Glutamate Homeostasis? J Neurosci 29:10588–10599. https://doi.org/10.1523/JNEUROSCI.2323-09.2009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi DK, Vargas JR, Wilcox KS (2010) Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis 40:573–585. https://doi.org/10.1016/j.nbd.2010.07.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deshpande T, Li T, Herde MK et al (2017) Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 65:1809–1820. https://doi.org/10.1002/glia.23196

Article  PubMed  Google Scholar 

Loddenkemper T, Grote K, Evers S et al (2002) Neurological manifestations of the oculodentodigital dysplasia syndrome. J Neurol 249:584–595. https://doi.org/10.1007/s004150200068

Article  PubMed  Google Scholar 

Walrave L, Vinken M, Leybaert L, Smolders I (2020) Astrocytic Connexin43 Channels as Candidate Targets in Epilepsy Treatment. Biomolecules 10:1578. https://doi.org/10.3390/biom10111578

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breithausen B, Kautzmann S, Boehlen A et al (2020) Limited contribution of astroglial gap junction coupling to buffering of extracellular K + in CA1 stratum radiatum. Glia 68:918–931. https://doi.org/10.1002/glia.23751

Article  PubMed  Google Scholar 

Pannasch U, Vargová L, Reingruber J et al (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci U S A 108:8467–8472. https://doi.org/10.1073/pnas.1016650108

Article  PubMed  PubMed Central  Google Scholar 

Wallraff A, Köhling R, Heinemann U et al (2006) The Impact of Astrocytic Gap Junctional Coupling on Potassium Buffering in the Hippocampus. J Neurosci 26:5438–5447. https://doi.org/10.1523/JNEUROSCI.0037-06.2006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bazzigaluppi P, Weisspapir I, Stefanovic B et al (2017) Astrocytic gap junction blockade markedly increases extracellular potassium without causing seizures in the mouse neocortex. Neurobiol Dis 101:1–7. https://doi.org/10.1016/j.nbd.2016.12.017

Article  CAS  PubMed  Google Scholar 

EbrahimAmini A, Bazzigaluppi P, Aquilino MS et al (2021) Neocortical in vivo focal and spreading potassium responses and the influence of astrocytic gap junctional coupling. Neurobiol Dis 147:105160. https://doi.org/10.1016/j.nbd.2020.105160

Article  CAS  PubMed  Google Scholar 

Deshpande T, Li T, Henning L et al (2020) Constitutive deletion of astrocytic connexins aggravates kainate-induced epilepsy. Glia 68:2136–2147. https://doi.org/10.1002/glia.23832

Article  PubMed  Google Scholar 

Chever O, Dossi E, Pannasch U et al (2016) Astroglial networks promote neuronal coordination. Sci Signal 9:ra6–ra6. https://doi.org/10.1126/scisignal.aad3066

Article  CAS  PubMed  Google Scholar 

Hösli L, Binini N, Ferrari KD et al (2022) Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning. Cell Rep 38:110484. https://doi.org/10.1016/j.celrep.2022.110484

Article  CAS  PubMed  Google Scholar 

Löscher W, Friedman A (2020) Structural, Molecular, and Functional Alterations of the Blood-Brain Barrier during Epileptogenesis and Epilepsy: A Cause, Consequence, or Both? Int J Mol Sci 21:591. https://doi.org/10.3390/ijms21020591

留言 (0)

沒有登入
gif