Mucoadhesive Oro-Gel–Containing Chitosan Lipidic Nanoparticles for the Management of Oral Squamous Cell Carcinoma

Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

Article  Google Scholar 

Cancer Facts and Figures. 2022. https://doi.org/10.3238/arztebl.2008.0255.

Li CC, Shen Z, Bavarian R, Yang F, Bhattacharya A. Oral cancer: genetics and the role of precision medicine. Dent Clin North Am. 2018;62(1):29–46. https://doi.org/10.1016/j.cden.2017.08.002.

Article  PubMed  Google Scholar 

Gharat SA, Momin M, Bhavsar C. Oral squamous cell carcinoma: current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit Rev Ther Drug Carrier Syst. 2016;33(4):363–400. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2016016272.

Article  PubMed  Google Scholar 

Ford PJ, Rich AM. Tobacco use and oral health. Addiction. 2021;116(12):3531–40. https://doi.org/10.1111/add.15513.

Article  PubMed  Google Scholar 

Ketabat, et al. Controlled drug delivery systems for oral cancer treatment—current status and future perspectives. Pharmaceutics. 2019;11(7):302. https://doi.org/10.3390/pharmaceutics11070302.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pradhan R, Chatterjee S, Hembram KC, Sethy C, Mandal M, Kundu CN. Nano formulated Resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J Nutr Biochem. 2021;92:1–14. https://doi.org/10.1016/j.jnutbio.2021.108624.

Article  CAS  Google Scholar 

Juneja A, Sultan A. Nanotechnology and nanobiomaterials: redefining ways of managing oral cancer. Online Turkish Journal of Health Sciences. 2020;5(4):693–700. https://doi.org/10.26453/otjhs.753846.

Article  Google Scholar 

Bharadwaj R, Medhi S. Oral squamous cell carcinoma and the cutting edge of nanotechnology. Multidisciplinary Cancer Investigation. 2020;4(2):36–45. https://doi.org/10.30699/mci.4.2.36.

Article  Google Scholar 

Wu D, et al. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev. 2021;50(7):4432–83. https://doi.org/10.1039/d0cs00908c.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tagde P, Kulkarni GT, Mishra DK, Kesharwani P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J Drug Deliv Sci Technol. 2020;56:101613. https://doi.org/10.1016/j.jddst.2020.101613.

Mahmood L. The metabolic processes of folic acid and vitamin B12 deficiency. J Health Res Rev. 2014;1(1):5. https://doi.org/10.4103/2394-2010.143318.

Article  Google Scholar 

García-Gozalbo B, Cabañas-Alite L. A narrative review about nutritional management and prevention of oral mucositis in haematology and oncology cancer patients undergoing antineoplastic treatments. Nutrients. 2021;13:11. https://doi.org/10.3390/nu13114075.

Thomsen M, Vitetta L. Adjunctive treatments for the prevention of chemotherapy- and radiotherapy-induced mucositis. Integr Cancer Ther. 2018;17(4):1027–47. https://doi.org/10.1177/1534735418794885.

Article  PubMed  PubMed Central  Google Scholar 

Mokbel K, Wazir U, Mokbel K. Chemoprevention of prostate cancer by natural agents: evidence from molecular and epidemiological studies. Anticancer Res. 2019;39(10):5231–59. https://doi.org/10.21873/anticanres.13720.

Article  CAS  PubMed  Google Scholar 

Almeida TC, et al. Resveratrol effects in oral cancer cells: a comprehensive review. Med Oncol. 2021;38(8):1–10. https://doi.org/10.1007/s12032-021-01548-0.

Article  CAS  Google Scholar 

Salehi B, et al. Resveratrol: a double-edged sword in health benefits. Biomedicines. 2018;6(3):1–20. https://doi.org/10.3390/biomedicines6030091.

Article  CAS  Google Scholar 

Basudkar V, Gharat S, Momin M, Shringarpure M. A review of anti-aging nanoformulations: recent developments in excipients for nanocosmeceuticals and regulatory guidelines. Crit Rev Ther Drug Carrier Syst. 2022;39(3):45–97. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2021039544.

Article  PubMed  Google Scholar 

Annaji M, Poudel I, Boddu SHS, Arnold RD, Tiwari AK, Babu RJ. Resveratrol-loaded nanomedicines for cancer applications. Cancer Rep. 2021;4:3. https://doi.org/10.1002/cnr2.1353.

Gunes M, Karavana SY, Yapar EA. Buccal drug delivery system: an overview about dosage forms and recent studies. Universal Journal of Pharmaceutical Research. 2020;4(6):70–6.

Google Scholar 

Ashri LY, Amal El Sayeh F, Ibrahim MA, Alshora DH Naguib MJ. Optimization and evaluation of chitosan buccal films containing tenoxicam for treating chronic periodontitis: in vitro and in vivo studies. J Drug Deliv Sci Technol. 2020;57:101720. https://doi.org/10.1016/j.jddst.2020.101720.

Ways TMM, Lau WM, Khutoryanskiy VV. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers. 2018;10:3. https://doi.org/10.3390/polym10030267.

Abouhussein D, El Nabarawi MA, Shalaby SH, El-Bary AA. Cetylpyridinium chloride chitosan blended mucoadhesive buccal films for treatment of pediatric oral diseases. J Drug Deliv SciTechnol. 2020;57:101676. https://doi.org/10.1016/j.jddst.2020.101676.

Kristó K, et al. Investigation of surface properties and free volumes of chitosan-based buccal mucoadhesive drug delivery films containing ascorbic acid. Pharmaceutics. 2022;14:2. https://doi.org/10.3390/pharmaceutics14020345.

Parhi R. Drug delivery applications of chitin and chitosan: a review. Environ Chem Lett. 2020;18(3):577–94. https://doi.org/10.1007/s10311-020-00963-5.

Article  CAS  Google Scholar 

Calixto GMF, Victorelli FD, Dovigo LN, Chorilli M. Polyethyleneimine and chitosan polymer-based mucoadhesive liquid crystalline systems intended for buccal drug delivery. AAPS PharmSciTech. 2018;19(2):820–36. https://doi.org/10.1208/s12249-017-0890-2.

Article  CAS  PubMed  Google Scholar 

Shakil MS, et al. Using chitosan or chitosan derivatives in cancer therapy. Polysaccharides. 2021;2(4):795–816. https://doi.org/10.3390/polysaccharides2040048.

Article  CAS  Google Scholar 

Akbarian A, Ebtekar M, Pakravan N, Hassan ZM. Folate receptor alpha targeted delivery of artemether to breast cancer cells with folate-decorated human serum albumin nanoparticles. Int J Biol Macromol. 2020;152:90–101. https://doi.org/10.1016/j.ijbiomac.2020.02.106.

Article  CAS  PubMed  Google Scholar 

Maiyo F, Singh M. Polymerized selenium nanoparticles for folate-receptor-targeted delivery of anti-Luc-siRNA: Potential for Gene Silencing. Biomedicines. 2020;8(4):76. https://doi.org/10.3390/biomedicines8040076.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abbas H, Kamel R, El-Sayed N. Dermal anti-oxidant, anti-inflammatory and anti-aging effects of compritol ATO-based resveratrol colloidal carriers prepared using mixed surfactants. Int J Pharm. 2018;541(1–2):37–47. https://doi.org/10.1016/j.ijpharm.2018.01.054.

Article  CAS  PubMed  Google Scholar 

Gokce EH, Korkmaz E, Dellera E, Sandri G, Cristina Bonferoni M, Ozer O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: Evaluation of antioxidant potential for dermal applications. Int J Nanomedicine. 2012;7:1841–1850. https://doi.org/10.2147/IJN.S29710.

Hajj Ali H, Michaux F, Khanji AN, Jasniewski J, Linder M. Chitosan - Shea butter solid nanoparticles assemblies for the preparation of a novel nanoparticles in microparticles system containing curcumin. Colloids Surf A Physicochem Eng Asp. 2018;553:359–367. https://doi.org/10.1016/j.colsurfa.2018.05.075.

Anwer MK, et al. Development of lipomer nanoparticles for the enhancement of drug release, anti-microbial activity and bioavailability of delafloxacin. Pharmaceutics. 2020;12(3):1–13. https://doi.org/10.3390/pharmaceutics12030252.

Article  CAS  Google Scholar 

Shtenberg Y, et al. Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. Int J Biol Macromol. 2018;111:62–9. https://doi.org/10.1016/j.ijbiomac.2017.12.137.

Article  CAS  PubMed  Google Scholar 

İnce İ, et al. Synthesis and characterization of folic acid-chitosan nanoparticles loaded with thymoquinone to target ovarian cancer cells. J Radioanal Nucl Chem. 2020;324(1):71–85. https://doi.org/10.1007/s10967-020-07058-z.

Article  CAS  Google Scholar 

Khan T, Gharat S, Chalke M, Momin M. Development of simultaneous spectrophotometric method for quantification of resveratrol and folic acid in an orogel. Int J Pharmaceutic Sci Res. 2019;10(4):2035–2039. https://doi.org/10.13040/IJPSR.0975-8232.10(4).2035-39.

Gupta S, Ghoshal S, Mishra MK, Kesharwani M, Gupta N, Dubey D. Formulation, evaluation and comparative study of the effect of different gelling agent on oxaprozin loaded topical emulgel. 2022;31.

Mutimer MN, Riffkin C, Hill JA, Glickman ME, Cyr GN. Modem ointment base technology II.:comparative evaluation of bases*. J Am Pharm Assoc (Scientific ed). 1956;45(4):212–8. https://doi.org/10.1002/jps.3030450406.

Article  CAS  Google Scholar 

Ghafar H, et al. Development and characterization of bioadhesive film embedded with lignocaine and calcium fluoride nanoparticles. AAPS PharmSciTech. 2020;21(2):1–12. https://doi.org/10.1208/s12249-019-1615-5.

Article  CAS  Google Scholar 

Kumar N, Salar RK, Prasad M, Ranjan K. Synthesis, characterization and anticancer activity of vincristine loaded folic acid-chitosan conjugated nanoparticles on NCI-H460 non-small cell lung cancer cell line. Egypt J Basic Appl Sci. 2018;5(1):87–99. https://doi.org/10.1016/j.ejbas.2017.11.002.

Article  Google Scholar 

Kumar CS, Thangam R, Mary SA, Kannan PR, Arun G, Madhan B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr Polym. 2020;231:115682. https://doi.org/10.1016/j.carbpol.2019.115682.

留言 (0)

沒有登入
gif