Intelligent antepartum fetal monitoring via deep learning and fusion of cardiotocographic signals and clinical data

Al-Yousif S, Jaenul A, Al-Dayyeni W, Alamoodi A, Saleh AH. Distributed under creative commons cc-by 4.0 open access a systematic review of automated pre-processing, feature extraction and classification of cardiotocography. J Comput Sci Technol. 2021. https://doi.org/10.7717/peerj-cs.452

Georgieva A, Abry P, Chudáček V, Djurić PM, Frasch MG, Kok R, Lear CA, Lemmens SN, Nunes I, Papageorghiou AT, et al. Computer-based intrapartum fetal monitoring and beyond: a review of the 2nd workshop on signal processing and monitoring in labor (October 2017, Oxford, UK). Acta Obstet Gynecol Scand. 2019;98(9):1207–17.

Article  Google Scholar 

Kahankova R, Martinek R, Jaros R, Behbehani K, Behar JA. A review of signal processing techniques for non-invasive fetal electrocardiography. IEEE Rev Biomed Eng. 2019;13:51–73.

Behar J.A, Weiner Z, Warrick P. Special session on computational fetal monitoring. In: 2019 Computing in cardiology (CinC), 2019;1–4 . https://doi.org/10.23919/CinC49843.2019.9005927.

Pereira S, Ingram C, Gupta N, Singh M, Chandraharan E. Recognising fetal compromise in the cardiograph during the antenatal period: pearls and pitfalls. Asian J Med Health. 2020. https://doi.org/10.9734/AJMAH/2020/v18i930238.

Ibrahim HA, Elgzar WT, Saied E. The effect of different positions during non-stress test on maternal hemodynamic parameters, satisfaction, and fetal cardiotocographic patterns. Afr J Reprod Health. 2021;25(1):81–9.

Google Scholar 

Saleem S, Naqvi S.S, Manzoor T, Saeed A, Rehman N.U, Mirza J A strategy for classification of ‘vaginal vs. cesarean section’ delivery: bivariate empirical mode decomposition of cardiotocographic recordings. Front Physiol. 2019;10:246.

Zeng R, Lu Y.S, Long S, Wang C, Murphy L. Cardiotocography signal abnormality classification using time-frequency features and ensemble cost-sensitive svm classifier. Comput Biol Med. 2021;130:104218.

Thippa RG, Praveen K, Lakshmanna K, Kaluri R, Baker T. Analysis of dimensionality reduction techniques on big data. IEEE Access 2020;8:54776–54788.

Fei Y, Huang X, Chen Q, Chen J, Wei H. Automatic classification of antepartum cardiotocography using fuzzy clustering and adaptive neuro-fuzzy inference system. In: 2020 IEEE international conference on bioinformatics and biomedicine (BIBM); 2020.

Hruban L, Spilka J, Chudacek V, Janku P. Agreement on intrapartum recordings between expert-obstetricians. J Eval Clin Pract. 2015;21(4):694–702.

Romano M, Bifulco P, Ruffo M, Improta G, Cesarelli M. Software for computerised analysis of cardiotocographic traces. Comput Methods Programs Biomed. 2016;124(C):121–37.

Fergus P, Chalmers C, Montanez C.C, Reilly D, Pineles B. Modelling segmented cardiotocography time-series signals using one-dimensional convolutional neural networks for the early detection of abnormal birth outcomes. IEEE Trans Emerg Top Comput Intell. 2020;5(6):882–92.

Zhao Z, Deng Y, Zhang Y, Zhang Y, Zhang X, Shao L. DeepFHR: intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network. BMC Med Inform Decis Mak. 2019;19:286.

Cmert Z, Kocamaz AF. Fetal hypoxia detection based on deep convolutional neural network with transfer learning approach. Cham: Springer; 2018.

Ma’Sum MA, Intan P, Jatmiko W, Krisnadhi AA, Suarjaya I. Improving deep learning classifier for fetus hypoxia detection in cardiotocography signal. In: 2019 International workshop on big data and information security (IWBIS); 2019.

Haijing, Tg, Taoyi, Wang, Mengke, Li, Xu, Yang: The design and implementation of cardiotocography signals classification algorithm based on neural network. Comput Math Methods Med. 2018. https://doi.org/10.1155/2018/8568617.

Yavuz P, Taze M, Salihoglu O. The effect of adolescent and advanced-age pregnancies on maternal and early neonatal clinical data. J Maternal Fetal Neonatal Med. 2022;35(25):7399–405.

Ferguson KK, Sammallahti S, Rosen E, Dries MVD, Jaddoe VWV. Fetal growth trajectories among small for gestational age babies and child neurodevelopment. Epidemiology. 2021;32(5):664–671.

Ni X, Wang H, Shaolan LV, Xiong M. An ensemble classification model based on imbalanced data for aviation safety; 2021.

Xu Z, So DR, Dai AM. MUFASA: multimodal fusion architecture search for electronic health records; 2021. https://arxiv.org/abs/2102.02340.

Zhang Y, Sheng M, Liu X, Wang R, Lin W, Ren P, Wang X, Zhao E, Song W. A heterogeneous multi-modal medical data fusion framework supporting hybrid data exploration. Health Inf Sci Syst. 2022;10(1):1–11.

Article  Google Scholar 

Jha M, Gupta R, Saxena R. A framework for in-vivo human brain tumor detection using image augmentation and hybrid features. Health Inf Sci Syst. 2022;10(1):1–12.

Article  Google Scholar 

Menegotto AB, Becker CDL, Cazella SC. Computer-aided diagnosis of hepatocellular carcinoma fusing imaging and structured health data. Health Inf Sci Syst. 2021;9(1):1–11.

Article  Google Scholar 

Zhong M, Yi H, Lai F, Liu M, Zeng R, Kang X, Xiao Y, Rong J, Wang H, Bai J. CTGNet: automatic analysis of fetal heart rate from cardiotocograph using artificial intelligence. Maternal Fetal Med. 2022. https://doi.org/10.1097/FM9.0000000000000147.

Petrozziello A, Redman CW, Papageorghiou AT, Jordanov I, Georgieva A. Multimodal convolutional neural networks to detect fetal compromise during labor and delivery. IEEE Access. 2019;7:112026–36.

Article  Google Scholar 

Improta G, Ricciardi C, Amato F, D’Addio G, Romano M. Efficacy of machine learning in predicting the kind of delivery by cardiotocography. In: XV Mediterranean conference on medical and biological engineering and computing—MEDICON 2020;2019. p. 793–800.

Chen Y, Guo A, Chen Q, Quan B, Hao Z. Intelligent classification of antepartum cardiotocography model based on deep forest. Biomed Signal Process Control. 2021;67(2): 102555.

Article  Google Scholar 

Pini N, Lucchini M, Esposito G, Tagliaferri S, Signorini MG. A machine learning approach to monitor the emergence of late intrauterine growth restriction. Front Artif Intell. 2021;4: 622616.

Article  Google Scholar 

Xie B. X. Kong, Duan T. Gynecology and obstetrics, 9th edn. Beijing: People’s Health Publishing House; 2018. p. 54–56.

Gao W, Lu Y. Fetal heart baseline extraction and classification based on deep learning. In: 2019 International conference on information technology and computer application (ITCA); 2019.

Cömert Z, Şengür A, Budak Ü, Kocamaz AF. Prediction of intrapartum fetal hypoxia considering feature selection algorithms and machine learning models. Health Inf Sci Syst. 2019;7(1):17.

留言 (0)

沒有登入
gif