Proteomic analysis of sialoliths from calcified, lipid and mixed groups as a source of potential biomarkers of deposit formation in the salivary glands

Sigismund PE, Zenk J, Koch M, Schapher M, Rudes M, Iro H. Nearly 3,000 salivary stones: Some clinical and epidemiologic aspects. Laryngoscope. 2015;125(8):1879–82. https://doi.org/10.1002/LARY.25377.

Article  PubMed  Google Scholar 

Huoh KC, Eisele DW. Etiologic Factors in Sialolithiasis. Otolaryngol-Head Neck Surgery. 2011. https://doi.org/10.1177/0194599811415489.

Article  Google Scholar 

Kraaij S, Karagozoglu KH, Forouzanfar T, Veerman ECI, Brand HS. Salivary stones symptoms, aetiology, biochemical composition and treatment. Br Dent J. 2014;217(11):E23. https://doi.org/10.1038/sj.bdj.2014.1054.

Article  CAS  PubMed  Google Scholar 

Kopeć T, Wierzbicka M, Szyfter W, Leszczyńska M. Algorithm changes in treatment of submandibular gland sialolithiasis. Eur Arch Otorhinol. 2013;270(7):2089–93. https://doi.org/10.1007/S00405-013-2463-7.

Article  Google Scholar 

Epivatianos A, Harrison JD. The presence of microcalculi in normal human submandibular and parotid salivary glands. Arch Oral Biol. 1989;34(4):261–5. https://doi.org/10.1016/0003-9969(89)90066-6.

Article  CAS  PubMed  Google Scholar 

Scott J. The prevalence of consolidated salivary deposits in the small ducts of human submandibular glands. J Oral Pathol Med. 1978;7(1):28–37. https://doi.org/10.1111/J.1600-0714.1978.TB01882.X.

Article  CAS  Google Scholar 

Delli K, Spijkervet FKL, Vissink A. Salivary gland diseases: infections, sialolithiasis and mucoceles. Monogr Oral Sci. 2014;24:135–48. https://doi.org/10.1159/000358794.

Article  PubMed  Google Scholar 

Wu CC, Hung SH, Lin HC, Lee CZ, Lee HC, Chung SD. 2016 Sialolithiasis is associated with nephrolithiasis: a case-control study. Acta Oto-Laryngologica. 2015;10(3109/00016489):1129068.

Google Scholar 

Crabtree GM, Yarington CT. Submandibular gland excision. Laryngoscope. 1988;98(10):1044–5. https://doi.org/10.1288/00005537-198810000-00003.

Article  CAS  PubMed  Google Scholar 

Tretiakow D, Skorek A, Wysocka J, Darowicki K, Ryl J. Classification of submandibular salivary stones based on ultrastructural studies. Oral Dis. 2021;27(7):1711–9. https://doi.org/10.1111/ODI.13708.

Article  PubMed  Google Scholar 

Triantafyllou A, Harrison JD, Donath K. Microlithiasis in parotid sialadenosis and chronic submandibular sialadenitis is related to the microenvironment: an ultrastructural and microanalytical investigation. Histopathology. 1998;32(6):530–5. https://doi.org/10.1046/J.1365-2559.1998.00432.X.

Article  CAS  PubMed  Google Scholar 

Li W, Wei L, Wang F, Peng S, Cheng Y, Li B. An experimental chronic obstructive sialadenitis model by partial ligation of the submandibular duct characterised by sialography, histology, and transmission electron microscopy. J Oral Rehabil. 2018;45(12):983–9. https://doi.org/10.1111/JOOR.12711.

Article  PubMed  Google Scholar 

Sabbadini E, Berczi I. Immunoregulation by the salivary glands. Biomed Rev. 1998;9:79–91. https://doi.org/10.14748/BMR.V9.138.

Article  CAS  Google Scholar 

Yiu AJ, Kalejaiye A, Amdur RL, Todd Hesham HN, Bandyopadhyay BC. Association of serum electrolytes and smoking with salivary gland stone formation. Int J Oral Maxillofac Surg. 2016. https://doi.org/10.1016/J.IJOM.2016.02.007.

Article  PubMed  PubMed Central  Google Scholar 

Harrison JD, Triantafyllou A, Garrett JR. Ultrastructural localization of microliths in salivary glands of cat. J Oral Pathol Med. 1993;22(8):358–62. https://doi.org/10.1111/J.1600-0714.1993.TB01089.X.

Article  CAS  PubMed  Google Scholar 

Triantafyllou A, Fletcher D, Scott J. Organic secretory products, adaptive responses and innervation in the parotid gland of ferret: a histochemical study. Arch Oral Biol. 2005;50(9):769–77. https://doi.org/10.1016/J.ARCHORALBIO.2005.01.008.

Article  CAS  PubMed  Google Scholar 

Baurmash HD. Chronic recurrent parotitis: A closer look at its origin, diagnosis, and management. J Oral Maxillofac Surg. 2004;62(8):1010–8. https://doi.org/10.1016/j.joms.2003.08.041.

Article  PubMed  Google Scholar 

Qi S, Liu X, Wang S. Sialoendoscopic and irrigation findings in chronic obstructive parotitis. Laryngoscope. 2005;115(3):541–5. https://doi.org/10.1097/01.MLG.0000157832.23380.DF.

Article  PubMed  Google Scholar 

Schroder SA, Homoe P, Wagner N, Bardow A. Does saliva composition affect the formation of sialolithiasis? J Laryngol Otol. 2017;131(2):162–7. https://doi.org/10.1017/S002221511600966X.

Article  CAS  PubMed  Google Scholar 

Marchal F, Kurt AM, Dulguerov P, Lehmann W. Retrograde theory in sialolithiasis formation. Arch Otolaryngol Head Neck Surg. 2001;127(1):66–8. https://doi.org/10.1001/ARCHOTOL.127.1.66.

Article  CAS  PubMed  Google Scholar 

Harrison JD. Causes, natural history, and incidence of salivary stones and obstructions. Otolaryngol Clin North Am. 2009;42(6):927–47. https://doi.org/10.1016/J.OTC.2009.08.012.

Article  PubMed  Google Scholar 

de Grandi R, et al. Salivary calculi microbiota: new insights into microbial networks and pathogens reservoir. Microbes Infect. 2019;21(2):109–12. https://doi.org/10.1016/J.MICINF.2018.10.002.

Article  PubMed  Google Scholar 

Szymánska A, Jankowska E, Orlikowska M, Behrendt I, Czaplewska P, Rodziewicz-Motowidło S. Influence of point mutations on the stability, dimerization, and oligomerization of human cystatin C and its L68Q variant. Front Mol Neurosci. 2012. https://doi.org/10.3389/FNMOL.2012.00082/BIBTEX.

Article  PubMed  PubMed Central  Google Scholar 

Ngu RK, Brown JE, Whaites EJ, Drage NA, Ng SY, Makdissi J. Salivary duct strictures: nature and incidence in benign salivary obstruction. Dentomaxillofacial Radiol. 2007. https://doi.org/10.1259/DMFR/24118767.

Article  Google Scholar 

Lee LIT, Pawar RR, Whitley S, Makdissi J. Incidence of different causes of benign obstruction of the salivary glands: retrospective analysis of 493 cases using fluoroscopy and digital subtraction sialography. Br J Oral Maxillofac Surg. 2015;53(1):54–7. https://doi.org/10.1016/J.BJOMS.2014.09.017.

Article  CAS  PubMed  Google Scholar 

Schapher M, et al. Neutrophil extracellular traps promote the development and growth of human salivary stones”. Cells. 2020. https://doi.org/10.3390/CELLS9092139.

Article  PubMed  PubMed Central  Google Scholar 

Burt HM, Jackson JK, Taylor DR, Crowther RS. Activation of human neutrophils by calcium carbonate polymorphs. Digestive Dis Sci. 1997. https://doi.org/10.1023/A:1018870511257.

Article  Google Scholar 

Mulay SR, et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun. 2016. https://doi.org/10.1038/NCOMMS10274.

Article  PubMed  PubMed Central  Google Scholar 

Muñoz LE, et al. Neutrophil extracellular traps initiate gallstone formation. Immunity. 2019;51(3):443-450.e4. https://doi.org/10.1016/J.IMMUNI.2019.07.002.

Article  PubMed  Google Scholar 

Schorn C, et al. Bonding the foe - NETting neutrophils immobilize the pro-inflammatory monosodium urate crystals. Front Immunol. 2012. https://doi.org/10.3389/FIMMU.2012.00376.

Article  PubMed  PubMed Central  Google Scholar 

Maueröder C, et al. Ménage-à-trois: the ratio of bicarbonate to CO2 and the pH regulate the capacity of neutrophils to form NETs. Front Immunol. 2016. https://doi.org/10.3389/FIMMU.2016.00583.

Article  PubMed  PubMed Central  Google Scholar 

Muñoz LE, et al. Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proc Natl Acad Sci USA. 2016;113(40):E5856–65. https://doi.org/10.1073/PNAS.1602230113.

Article  PubMed  PubMed Central  Google Scholar 

Rada B. Neutrophil extracellular traps and microcrystals. J Immunol Res. 2017. https://doi.org/10.1155/2017/2896380.

Article  PubMed  PubMed Central  Google Scholar 

Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New Insights into neutrophil extracellular traps mechanisms of formation and role in inflammation. Front Immunol. 2016. https://doi.org/10.3389/FIMMU.2016.00302.

Article  PubMed  PubMed Central  Google Scholar 

Maueröder C, et al. How neutrophil extracellular traps orchestrate the local immune response in gout. J Mol Med. 2014. https://doi.org/10.1007/S00109-015-1295-X.

Article  Google Scholar 

Schauer C, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nature Med. 2014. https://doi.org/10.1038/nm.3547.

Article  PubMed  Google Scholar 

Reinwald C, et al. Reply to ‘Neutrophils are not required for resolution of acute gouty arthritis in mice’”. Nature Med. 2016. https://doi.org/10.1038/nm.4217.

Article  PubMed  Google Scholar 

Leppkes M, et al. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nat Commun. 2016. https://doi.org/10.1038/NCOMMS10973.

Article  PubMed  PubMed Central  Google Scholar 

Kraaij S, de Visscher JGAM, Apperloo RC, Nazmi K, Bikker FJ, Brand HS. Lactoferrin and the development of salivary stones: a pilot study. BioMetals. 2022. https://doi.org/10.1007/S10534-022-00465-7/TABLES/2.

Article  PubMed  Google Scholar 

Amado F, Lobo MJC, Domingues P, Duarte JA, Vitorino R. Salivary peptidomics. Expert Rev Proteom. 2014.

留言 (0)

沒有登入
gif