Bioactive fraction of Tragia involucrata Linn leaves attenuates inflammation in Freund’s complete adjuvant-induced arthritis in Wistar albino rats via inhibiting NF-κB

Alagar Yadav S, Ramalingam S, Jabamalai Raj A, Subban R (2015) Antihistamine from Tragia involucrata L. leaves. J Complement Integr Medi 12:217–226. https://doi.org/10.1515/jcim-2015-0015

Article  CAS  Google Scholar 

Alam P, Parvez MK, Arbab AH, Al-Dosari MS (2017) Quantitative analysis of rutin, quercetin, naringenin, and gallic acid by validated RP- and NP-HPTLC methods for quality control of anti-HBV active extract of Guiera senegalensis. Pharm Biol 55:1317–1323. https://doi.org/10.1080/13880209.2017.1300175

Article  CAS  PubMed  PubMed Central  Google Scholar 

Appian S, Madhavachandran V, Appukuttannair G (2013) Medicinal plants in the treatment of arthritis. Ann Phytomedicine 2:3–36

Google Scholar 

Choudhary M, Kumar V, Gupta P, Singh S (2014) Investigation of antiarthritic potential of Plumeria alba L. leaves in acute and chronic models of arthritis. Biomed Res Int 2014:474616. https://doi.org/10.1155/2014/474616

Article  PubMed  PubMed Central  Google Scholar 

Dhara AK, Suba V, Sen T et al (2000) Preliminary studies on the anti-inflammatory and analgesic activity of the methanolic fraction of the root extract of Tragia involucrata Linn. J Ethnopharmacol 72:265–268. https://doi.org/10.1016/S0378-8741(00)00166-5

Article  CAS  PubMed  Google Scholar 

Ekambaram SP, Perumal SS, Pavadai S (2017) Anti-inflammatory effect of Naravelia zeylanica DC via suppression of inflammatory mediators in carrageenan-induced abdominal oedema in zebrafish model. Inflammopharmacology 25:147–158. https://doi.org/10.1007/s10787-016-0303-2

Article  CAS  PubMed  Google Scholar 

Gohil P, Patel V, Deshpande S et al (2018) Anti-arthritic activity of cell wall content of Lactobacillus plantarum in freund’s adjuvant-induced arthritic rats: involvement of cellular inflammatory mediators and other biomarkers. Inflammopharmacology 26:171–181. https://doi.org/10.1007/s10787-017-0370-z

Article  CAS  PubMed  Google Scholar 

Kim K-W, Kim B-M, Moon H-W et al (2015) Role of C-reactive protein in osteoclastogenesis in rheumatoid arthritis. Arthritis Res Ther 17:41. https://doi.org/10.1186/s13075-015-0563-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirtikar KR, Basu BD (1987) Indian medicinal plants, 2nd edn. International book distributors, Dehradun

Google Scholar 

Kumar BS, Suneetha P, Mohan A, Kumar DP, Sarma KVS (2017) Comparison of Disease Activity Score in 28 joints with ESR (DAS28), Clinical Disease Activity Index (CDAI), Health Assessment Questionnaire Disability Index (HAQ-DI) & Routine Assessment of Patient Index Data with 3 measures (RAPID3) for assessing disease activity in patients with rheumatoid arthritis at initial presentation. Indian J Med Res 146:S57–S62. https://doi.org/10.4103/ijmr.IJMR_701_15

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Kakkar R, Wang J (2018) In vivo and in vitro approach to anti-arthritic and anti-inflammatory effect of crocetin by alteration of nuclear factor-E2-related factor 2/hem oxygenase (HO)-1 and NF-κB expression. Front Pharmacol 9:1341

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

Article  PubMed  PubMed Central  Google Scholar 

Mallik BK, Panda T, Padhy RN (2012) Traditional herbal practices by the ethnic people of Kalahandi district of Odisha, India. Asian Pac J Trop Biomed 2:S988–S994. https://doi.org/10.1016/S2221-1691(12)60349-9

Article  Google Scholar 

Mbiantcha M, Almas J, Shabana SU et al (2017) Anti-arthritic property of crude extracts of Piptadeniastrum africanum (Mimosaceae) in complete Freund’s adjuvant-induced arthritis in rats. BMC Complement Altern Med 17:111. https://doi.org/10.1186/s12906-017-1623-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mizushima Y, Kobayashi M (1968) Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J Pharm Pharmacol 20:169–173. https://doi.org/10.1111/j.2042-7158.1968.tb09718.x

Article  CAS  PubMed  Google Scholar 

Naik S, Wala S (2014) Arthritis, a complex connective and synovial joint destructive autoimmune disease: animal models of arthritis with varied etiopathology and their significance. J Postgrad Med 60:309–317. https://doi.org/10.4103/0022-3859.138799

Article  CAS  PubMed  Google Scholar 

Nisar A, Mamat A, Mohamed Dzahir MIH et al (2017) Identification of flavonoids (quercetin, gallic acid and rutin) from Catharanthus Roseus plant parts using deep eutectic solvent. Recent Adv Biol Med 3:1–6. https://doi.org/10.18639/RABM.2016.02.347628

Article  CAS  Google Scholar 

Panda D, Dash SK, Dash GK (2012) Phytochemical examination and antimicrobial activity of various solvent extracts and the selected isolated compounds from roots of Tragia involucrata Linn. Int J Pharm Sci Drug Res 4:44–48

Google Scholar 

Patel R, Kadri S, Gohil P et al (2021) Amelioration of complete Freund’s adjuvant-induced arthritis by Calotropis procera latex in rats. Futur J Pharm Sci 7:213. https://doi.org/10.1186/s43094-021-00361-w

Article  Google Scholar 

Pope JE, Choy EH (2021) C-reactive protein and implications in rheumatoid arthritis and associated comorbidities. Semin Arthritis Rheum 51:219–229. https://doi.org/10.1016/j.semarthrit.2020.11.005

Article  CAS  PubMed  Google Scholar 

Rajendran R, Krishnakumar E (2010) Anti-arthritic activity of Premna serratifolia Linn., wood against adjuvant induced arthritis. Avicenna J Med Biotechnol 2:101–106

PubMed  PubMed Central  Google Scholar 

Rathinavel T, Ammashi S, Shanmugam G (2021) Analgesic and anti-inflammatory potential of lupeol isolated from Indian traditional medicinal plant Crateva adansonii screened through in vivo and in silico approaches. J Genet Eng Biotechnol 19:62. https://doi.org/10.1186/s43141-021-00167-6

Article  PubMed  PubMed Central  Google Scholar 

Sakat S, Juvekar A, Gambhire M (2010) In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int J Pharm Pharm Sci 2:146–155

Google Scholar 

Salehi B, Machin L, Monzote L et al (2020) Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega 5:11849–11872. https://doi.org/10.1021/acsomega.0c01818

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samy RP, Gopalakrishnakone P, Houghton P et al (2006) Effect of aqueous extract of Tragia involucrata Linn. on acute and subacute inflammation. Phyther Res 20:310–312. https://doi.org/10.1002/ptr.1845

Article  Google Scholar 

Samy PR, Sethi G, Chow TKV, Stiles GB (2013) Plant-based hydrocarbon esters from Tragia involucrata possess antimicrobial and anti-inflammatory activities. Infect Disord–drug Targets 13:141–153

Article  CAS  PubMed  Google Scholar 

Sen A (2020) Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 8:1767–1792. https://doi.org/10.12998/wjcc.v8.i10.1767

Article  PubMed  PubMed Central  Google Scholar 

Sun S, Bay-Jensen A-C, Karsdal MA et al (2014) The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet Disord 15:93. https://doi.org/10.1186/1471-2474-15-93

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uprety Y, Poudel RC, Gurung J et al (2016) Traditional use and management of NTFPs in Kangchenjunga landscape: implications for conservation and livelihoods. J Ethnobiol Ethnomed 12:19. https://doi.org/10.1186/s13002-016-0089-8

Article  PubMed  PubMed Central  Google Scholar 

Velu V, Malipeddi H (2015) In vitro anti-arthritic and hemolytic activity of leaf extracts of Tragia involucrate. IntJ Pharm Tech Res 8:46–50

CAS  Google Scholar 

Xue M, McKelvey K, Shen K et al (2014) Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology 53:2270–2279. https://doi.org/10.1093/rheumatology/keu254

Article  CAS  PubMed  Google Scholar 

Zhang X, Dong Y, Dong H et al (2017) Investigation of the effect of phlomisoside F on complete Freund’s adjuvant-induced arthritis. Exp Ther Med 13:710–716. https://doi.org/10.3892/etm.2016.3995

Article  CAS  PubMed  Google Scholar 

Zhang F, Liu Z, He X et al (2020) β-sitosterol-loaded solid lipid nanoparticles ameliorate complete Freund’s adjuvant-induced arthritis in rats: involvement of NF-кB and HO-1/Nrf-2 pathway. Drug Deliv 27:1329–1341. https://doi.org/10.1080/10717544.2020.1818883

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif