Mitochondrial damage activates the NLRP10 inflammasome

Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

Article  CAS  PubMed  Google Scholar 

Broderick, L., de Nardo, D., Franklin, B. S., Hoffman, H. M. & Latz, E. The inflammasomes and autoinflammatory syndromes. Annu. Rev. Pathol. Mech. Dis. 10, 395–424 (2015).

Article  CAS  Google Scholar 

Mangan, M. S. J. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov. 17, 588–606 (2018).

Liston, A. & Masters, S. L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol. 17, 208–214 (2017).

Muñoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

Article  PubMed  PubMed Central  Google Scholar 

He, Y., Hara, H. & Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016).

Shi, H. et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17, 250–258 (2016).

Article  CAS  PubMed  Google Scholar 

Schmid-Burgk, J. L. et al. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J. Biol. Chem. 291, 103–109 (2016).

Article  CAS  PubMed  Google Scholar 

Chen, J. & Chen, Z. J. PtdIns4P on dispersed trans-Golgi network mediates NLR P3 inflammasome activation. Nature 564, 71–76 (2018).

Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bae, Y. S. et al. Identification of a compound that directly stimulates phospholipase C activity. Mol. Pharmacol. 63, 1043–1050 (2003).

Article  CAS  PubMed  Google Scholar 

Lee, G.-S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca 21 and cAMP. Nature 492, 123–127 (2012).

Rossol, M. et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat. Commun. 3, 1329 (2012).

Article  PubMed  Google Scholar 

Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

Fernandes-Alnemri, T., Yu, J.-W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

Article  CAS  PubMed  Google Scholar 

Franchi, L., Eigenbrod, T. & Núñez, G. Cutting edge: TNF-α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183, 792–796 (2009).

Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

Coll, R. C. et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol. 15, 556–559 (2019).

Article  CAS  PubMed  Google Scholar 

Friberg, H., Ferrand-Drake, M., Bengtsson, F., Halestrap, A. P. & Wieloch, T. Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J. Neurosci. 18, 5151–5159 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korge, P. & Weiss, J. N. Thapsigargin directly induces the mitochondrial permeability transition. Eur. J. Biochem. 265, 273–280 (1999).

Article  CAS  PubMed  Google Scholar 

Xin, M. et al. Small-molecule Bax agonists for cancer therapy. Nat. Commun. 5, 4935 (2014).

Lech, M., Avila-Ferrufino, A., Skuginna, V., Susanti, H. E. & Anders, H.-J. Quantitative expression of RIG-like helicase, NOD-like receptor and inflammasome-related mRNAs in humans and mice. Int. Immunol. 22, 717–728 (2010).

Lautz, K. et al. NLRP10 enhances Shigella-induced pro-inflammatory responses. Cell. Microbiol. 14, 1568–1583 (2012).

Asano, M. et al. Characterization of innate and adaptive immune responses in PYNOD-deficient mice. Immunohorizons 2, 139–141 (2018).

Google Scholar 

Vacca, M. et al. NLRP10 enhances CD4+ T-cell-mediated IFNγ response via regulation of dendritic cell-derived IL-12 release. Front. Immunol. 8, 1462 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Dang, E. V., McDonald, J. G., Russell, D. W. & Cyster, J. G. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell 171, 1057–1071.e11 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662 (2005).

Article  CAS  PubMed  Google Scholar 

Basso, E. et al. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J. Biol. Chem. 280, 18558–18561 (2005).

Article  CAS  PubMed  Google Scholar 

Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658 (2005).

Article  CAS  PubMed  Google Scholar 

Marton, J. et al. Cyclosporine a treatment inhibits Abcc6-dependent cardiac necrosis and calcification following coxsackievirus B3 infection in mice. PLoS ONE 10, e0138222 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Steinkasserer, A. et al. Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus type 1 (HIV-1): interference with early and late events in HIV-1 replication J. Virol. https://doi.org/10.1128/jvi.69.2.814-824.1995 (1995).

Paeshuyse, J. et al. The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro. Hepatology 43, 761–770 (2006).

Bernardi, P. et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 2077–2099 (2006).

Quarato, G., Llambi, F., Guy, C.S. et al. Ca2+-mediated mitochondrial inner membrane permeabilization induces cell death independently of Bax and Bak. Cell Death Differ. 29, 1318–1334 (2022).

Macdonald, J. A., Wijekoon, C. P., Liao, K.-C. & Muruve, D. A. Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins. IUBMB Life 65, 851–862 (2013).

Duncan, J. A. et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl Acad Sci. USA 104, 8041–8046 (2007).

Tapia-Abellán, A. et al. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat. Chem. Biol. 15, 560–564 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Stack, J. H. et al. IL-Converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J. Immunol. 175, 2630–2634 (2005).

Hoglen, N. C. et al. Characterization of IDN-6556 (3--4-oxo-5-(2,3,5, 6-tetrafluoro-phenoxy)-pentanoic acid): a liver-targeted caspase Inhibitor. J. Pharmacol. Exp. Ther. 309, 634–640 (2004).

Article  CAS  PubMed  Google Scholar 

Mirza, N., Sowa, A. S., Lautz, K. & Kufer, T. A. NLRP10 affects the stability of Abin-1 to control inflammatory responses. J. Immunol. 202, 218–227 (2019).

Article  CAS  PubMed  Google Scholar 

Damm, A., Giebeler, N., Zamek, J., Zigrino, P. & Kufer, T. A. Epidermal NLRP10 contributes to contact hypersensitivity responses in mice. Eur. J. Immunol. 46, 1959–1969 (2016).

Article  CAS  PubMed  Google Scholar 

Lachner, J., Mlitz, V., Tschachler, E. & Eckhart, L. Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes. Sci. Rep. 7, 17446 (2017).

Robinson, K. S. et al. ZAKa-driven ribotoxic stress response activates the human NLRP1 inflammasome. Science 377, 328–335 (2022).

Tanaka, N. et al. Eight novel susceptibility loci and putative causal variants in atopic dermatitis. J. Allergy Clin. Immunol. 148, 1293–1306 (2021).

Article  CAS  PubMed  Google Scholar 

Hirota, T. et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat. Genet. 44, 1222–1226 (2012).

Wang, Y. et al. PYNOD, a novel Apaf‐1/CED4‐like protein is an inhibitor of ASC and caspase‐1. Int. Immunol. 16, 777–786 (2004).

Kinoshita, T., Wang, Y., Hasegawa, M., Imamura, R. & Suda, T. PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1β secretion. J. Biol. Chem. 280, 21720–21725 (2005).

Article  CAS  PubMed  Google Scholar 

Meunier, E. & Broz, P. Evolutionary convergence and divergence in NLR function and structure. Trends Immunol. 38, 744–757 (2017).

The Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

Zheng, D. et al. Epithelial NLRP10 inflammasome mediates protection against intestinal autoinflammation. Nat. Immunol. (in the press).

Dickson, M. A. et al. Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. https://doi.org/10.1128/mcb.20.4.1436-1447.2000 (2000).

Aiyar, A., Xiang, Y., Leis, J. Site-directed mutagenesis using overlap extension PCR. in In Vitro Mutagenesis Protocols. Methods In Molecular Medicine Vol. 57 (ed Trower, M. K.) 177–191 (Humana Press, 1996).

Robinson, K. S. et al. Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia. Science 370, eaay2002 (2020).

Article  CAS  PubMed  Google Scholar 

Jenster, L.-M. et al. P38 kinases mediate NLRP1 inflammasome activation after ribotoxic stress response and virus infection. J. Exp. Med. 220, e20220837 (2023).

Hashiguchi K. & Zhang-Akiyama, Q.-M. Establishment of human cell lines lacking mitochondrial DNA. in Mitochondrial DNA: Methods and Protocols (ed Stuart, J. A.) 383–391 (Humana Press, 2009).

West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

Article  CAS  PubMed  Google Scholar 

Franklin, B. S. et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15, 727–737 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stutz, A., Horvath, G. L., Monks, B. G. & Latz, E. ASC speck formation as a readout for inflammasome activation. in The Inflammasome. Methods in Molecular Biology Vol. 1040 (De Nardo, C., & Latz, E.) 91–101 (Humana Press, 2013). .

Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif