Morphogenic plasticity: the pathogenic attribute of Candida albicans

Alby K, Bennett RJ (2009) Stress-Induced phenotypic switching in Candida albicans. Mol Biol Cell 20(14):3178–3191. https://doi.org/10.1091/mbc.e09-01-0040

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrews TJ (2005) Visual cortex: how are faces and objects represented? Curr Biol 15(12):453–455. https://doi.org/10.1016/j.cub.2005.06.021

Article  CAS  Google Scholar 

Ariizumi K, Shen GL, Shikano S, Xu S, Ritter R, Kumamoto T, Edelbaum D, Morita A, Bergstresser PR, Takashima A (2000) Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem 275(26):20157–20167. https://doi.org/10.1074/jbc.M909512199

Article  CAS  PubMed  Google Scholar 

Bachewich C, Thomas DY, Whiteway M (2003) Depletion of a Polo-like Kinase in Candida albicans activates cyclase-dependent Hyphal-like Growth. Mol Biol Cell 14(5):2163–2180. https://doi.org/10.1091/mbc.02-05-0076

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bachewich C, Nantel A, Whiteway M (2005) Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans. Mol Microbiol 57(4):942–959. https://doi.org/10.1111/j.1365-2958.2005.04727.x

Article  CAS  PubMed  Google Scholar 

Baillie GS, Douglas LJ (1999) Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 48(7):671–679. https://doi.org/10.1099/00222615-48-7-671

Article  PubMed  Google Scholar 

Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C, López-Ribot JL, Kadosh D (2008) UME6, a Novel filament-specific regulator of candida albicans hyphal extension and virulence. Mol Biol Cell 19(4):1354–1365. https://doi.org/10.1091/mbc.e07-11-1110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barelle CJ, Bohula EA, Kron SJ, Wessels D, Soll DR, Schäfer A, Brown AJP, Gow NAR (2003) Asynchronous cell cycle and asymmetric vacuolar inheritance in true hyphae of Candida albicans. Eukaryot Cell 2(3):398–410. https://doi.org/10.1128/EC.2.3.398-410.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beekman CN, Cuomo CA, Bennett RJ, Ene IV (2021) Comparative genomics of white and opaque cell states supports an epigenetic mechanism of phenotypic switching in Candida albicans. G3 Genes Genomes Genetics. https://doi.org/10.1093/G3JOURNAL/JKAB001

Article  PubMed  PubMed Central  Google Scholar 

Berman J (2006) Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol 9(6):595–601. https://doi.org/10.1016/j.mib.2006.10.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berman J (2012) Candida albicans. Curr Biol 22(16):R620–R622. https://doi.org/10.1016/j.cub.2012.05.043

Article  CAS  PubMed  Google Scholar 

Bishop A, Lane R, Beniston R, Chapa-Y-Lazo B, Smythe C, Sudbery P (2010) Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J 29(17):2930–2942. https://doi.org/10.1038/emboj.2010.158

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biswas K, Morschhäuser J (2005) The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol 56(3):649–669. https://doi.org/10.1111/j.1365-2958.2005.04576.x

Article  CAS  PubMed  Google Scholar 

Blank M, Tunkel AR (2012) Infections of the central nervous system. Pathy’s Princ Pract Geriatr Med Fifth Ed 2(May):1447–1463. https://doi.org/10.1002/9781119952930.ch117

Article  Google Scholar 

Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277(5322):105–109. https://doi.org/10.1126/science.277.5322.105

Article  CAS  PubMed  Google Scholar 

Braun BR, Head WS, Wang MX, Johnson AD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156(1):31–44. https://doi.org/10.1093/genetics/156.1.31

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brenes LR, Lohse MB, Hartooni N, Johnson AD (2020) A set of diverse genes influence the frequency of white-opaque switching in Candida albicans. G3 Genes Genomes Genet 10:2593–2600

CAS  Google Scholar 

Carlisle PL, Banerjee M, Lazzell A, Monteagudo C, López-Ribot JL, Kadosh D (2009) Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc Natl Acad Sci USA 106(2):599–604. https://doi.org/10.1073/pnas.0804061106

Article  PubMed  Google Scholar 

Carlson M, Osmond BC, Neigeborn L, Botstein D (1984) A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast. Genetics 107(1):19–32. https://doi.org/10.1093/genetics/107.1.19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cavalheiro M, Teixeira MC (2018) Candida biofilms: threats, challenges, and promising strategies. Front Med 5:1–15. https://doi.org/10.3389/fmed.2018.00028

Article  Google Scholar 

Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, Cormick TMC, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans. J Bacteriol 183(18):5385–5394. https://doi.org/10.1128/JB.183.18.5385

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandra J, McCormick TS, Imamura Y, Mukherjee PK, Ghannoum MA (2007a) Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro- and anti-inflammatory cytokines. Infect Immun 75(5):2612–2620. https://doi.org/10.1128/IAI.01841-06

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Chong PP (2014) Multi-step pathogenesis and induction of local immune response by systemic Candida Albicans infection in an intravenous challenge mouse model. Int J Mol Sci 15(8):14848–14867. https://doi.org/10.3390/ijms150814848

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chow EWL, Pang LM, Wang Y (2021) From jekyll to hyde: the yeast–hyphal transition of Candida albicans. Pathogens 10(7):1–29. https://doi.org/10.3390/pathogens10070859

Article  CAS  Google Scholar 

Crampin H, Finley K, Gerami-Nejad M, Court H, Gale C, Berman J, Sudbery P (2005) Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. J Cell Sci 118(13):2935–2947. https://doi.org/10.1242/jcs.02414

Article  CAS  PubMed  Google Scholar 

Da Rosa JL, Boyartchuk VL, Zhu LJ, Kaufman PD (2010) Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Nat Acad Sci USA 107(4):1594–1599. https://doi.org/10.1073/pnas.0912427107

Article  Google Scholar 

Derkinderen P, Bruneel F, Bouchaud O, Regnier B (2000) Spondylodiscitis and epidural abscess due to Candida albicans. Eur Spine J 9(1):72–74. https://doi.org/10.1007/s005860050013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunker C, Polke M, Schulze-Richter B, Schubert K, Rudolphi S, Gressler AE, Pawlik T, Prada Salcedo JP, Niemiec MJ, Slesiona-Künzel S, Swidergall M, Martin R, Dandekar T, Jacobsen ID (2021) Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain. Nat Commun 12(1):1–20. https://doi.org/10.1038/s41467-021-24095-8

Article  CAS  Google Scholar 

Eggimann P, Garbino J, Pittet D (2003) Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis 3(11):685–702. https://doi.org/10.1016/s1473-3099(03)00801-6

Article  PubMed  Google Scholar 

Ernst JF (2000) Transcription factors in Candida albicans - environmental control of morphogenesis. Microbiology 146( Pt 8):1763–1774. https://doi.org/10.1099/00221287-146-8-1763

Article  CAS  PubMed  Google Scholar 

Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9(2):109–118. https://doi.org/10.1038/nrmicro2475

Article  CAS  PubMed  Google Scholar 

Geiger J, Wessels D, Lockhart SR, Soll DR (2004) Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infect Immun 72(2):667–677. https://doi.org/10.1128/IAI.72.2.667-677.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

González-Novo A, Correa-Bordes J, Labrador L, Sánchez M, Vázquez de Aldana CR, Jiménez J (2008) Sep7 is essential to modify Septin ring dynamics and inhibit cell separation during Candida Albicans hyphal growth. Mol Biol Cell 19(4):1509–1518. https://doi.org/10.1091/mbc.e07-09-0876

Article  PubMed  PubMed Central  Google Scholar 

Gow NAR, Gooday GW (1984) A model for the germ tube formation and mycelial growth form of candida albicans. Med Mycol 22(2):137–144. https://doi.org/10.1080/00362178485380211

Article  CAS  Google Scholar 

Gow NAR, Hube B (2012) Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 15(4):406–412. https://doi.org/10.1016/j.mib.2012.04.005

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif