Recent advances in modified poly (lactic acid) as tissue engineering materials

Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci Part B: Polym Phys. 2011;49(12):832–64.

Article  Google Scholar 

Kumar SSD, Abrahamse H. Advancement of nanobiomaterials to deliver natural compounds for tissue engineering applications. Int J Mol Sci. 2020;21(18):6752.

Article  Google Scholar 

Sin L, Rahmat A, Rahman W. Degradation and stability of poly (lactic acid). Polylactic Acid. 2013:247 – 99.

Carvalho TSS, Ribeiro N, Torres PMC, Almeida JC, Belo H, Araújo J. Magnetic polylactic acid-calcium phosphate-based biocomposite as a potential biomaterial for tissue engineering applications. Mater Chem Phys. 2023;296:127175. https://doi.org/10.1016/j.matchemphys.2022.127175.

Article  Google Scholar 

Maleki H, Azimi B, Ismaeilimoghadam S, Danti S. Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications. Appl Sci. 2022;12(6):3192.

Article  Google Scholar 

Miranda CC, Gomes MR, Moço M, Cabral JMS, Ferreira FC, Sanjuan-Alberte P. A concise review on Electrospun scaffolds for kidney tissue Engineering. Bioeng (Basel). 2022;9(10). https://doi.org/10.3390/bioengineering9100554.

Milovanovic S, Pajnik J, Lukic I. Tailoring of advanced poly(lactic acid)-based materials: a review. J Appl Polym Sci. 2022;139(12):51839. https://doi.org/10.1002/app.51839.

Article  Google Scholar 

Vlachopoulos A, Karlioti G, Balla E, Daniilidis V, Kalamas T, Stefanidou M, et al. Poly(lactic Acid)-Based microparticles for drug delivery applications: an overview of recent advances. Pharmaceutics. 2022;14(2). https://doi.org/10.3390/pharmaceutics14020359.

Ilyas RA, Zuhri MYM, Aisyah HA, Asyraf MRM, Hassan SA, Zainudin ES, et al. Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and their composites for Advanced Applications. Polym (Basel). 2022;14(1). https://doi.org/10.3390/polym14010202.

Joseph TM, Kallingal A, Suresh AM, Mahapatra DK, Hasanin MS, Haponiuk J et al. 3D printing of polylactic acid: recent advances and opportunities.Int J Adv Manuf Technol. 2023:1–21. doi: https://doi.org/10.1007/s00170-022-10795-y.

More N, Avhad M, Utekar S, More A. Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polym Bull. 2023;80(2):1117–53. https://doi.org/10.1007/s00289-022-04135-z.

Article  Google Scholar 

Grigora M-E, Terzopoulou Z, Baciu D, Steriotis T, Charalambopoulou G, Gounari E, et al. 3D printed poly(lactic acid)-based nanocomposite scaffolds with bioactive coatings for tissue engineering applications. J Mater Sci. 2023;58(6):2740–63. https://doi.org/10.1007/s10853-023-08149-4.

Article  Google Scholar 

Martinez FAC, Balciunas EM, Salgado JM, González JMD, Converti A, de Souza Oliveira RP. Lactic acid properties, applications and production: a review. Trends Food Sci Technol. 2013;30(1):70–83.

Article  Google Scholar 

Benninga H. A history of lactic acid making: a chapter in the history of biotechnology. Springer Science & Business Media; 1990.

Dorgan J, Braun B, Wegner J, Knauss D. Poly (lactic acids): a brief review. 2006.

Carothers WH, Dorough G, Natta Fv. Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J Am Chem Soc. 1932;54(2):761–72.

Article  Google Scholar 

Kulkarni R, Pani K, Neuman C, Leonard F. Polylactic acid for surgical implants. Arch Surg. 1966;93(5):839–43.

Article  Google Scholar 

Huang S, Xue Y, Yu B, Wang L, Zhou C, Ma Y. A review of the recent developments in the bioproduction of polylactic acid and its precursors optically pure lactic acids. Molecules. 2021;26(21):6446.

Article  Google Scholar 

Södergård A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci. 2002;27(6):1123–63.

Article  Google Scholar 

Idler C, Venus J, Kamm B. Microorganisms for the production of lactic acid and organic lactates. Microorganisms in biorefineries. 2015:225 – 73.

Yankov D. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product.Frontiers in Chemistry. 2022;10.

Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J et al. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry.Frontiers in bioengineering and biotechnology. 2021:378.

Klotz S, Kaufmann N, Kuenz A, Prüße U. Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol. 2016;100(22):9423–37.

Article  Google Scholar 

Huang LP, Jin B, Lant P, Zhou J. Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus. J Chem Technol Biotechnology: Int Res Process Environ Clean Technol. 2003;78(8):899–906.

Article  Google Scholar 

Hagen R. PLA (Polylactic Acid). Reference Module in materials Science and Materials Engineering. Elsevier; 2016.

Huang LP, Dong T, Chen JW, Li N. Biotechnological production of lactic acid integrated with fishmeal wastewater treatment by Rhizopus oryzae. Bioprocess Biosyst Eng. 2007;30(2):135–40.

Article  Google Scholar 

Zhang ZY, Jin B, Kelly JM. Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J. 2007;35(3):251–63.

Article  Google Scholar 

Petrova P, Petrov K. Lactic acid fermentation of cereals and pseudocereals: ancient nutritional biotechnologies with modern applications. Nutrients. 2020;12(4):1118.

Article  Google Scholar 

Pielech-Przybylska K, Balcerek M, Ciepielowski G, Pacholczyk-Sienicka B, Albrecht Ł, Dziekońska-Kubczak U, et al. Effect of co-inoculation with Saccharomyces cerevisiae and lactic acid bacteria on the content of propan-2-ol, acetaldehyde and weak acids in fermented distillery mashes. Int J Mol Sci. 2019;20(7):1659.

Article  Google Scholar 

Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. Microb Cell. 2021;8(6):111–30.

Article  Google Scholar 

Ilmén M, Koivuranta K, Ruohonen L, Rajgarhia V, Suominen P, Penttilä M. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Microb Cell Fact. 2013;12(1):1–15.

Article  Google Scholar 

Esquivel-Hernández DA, Pennacchio A, Torres-Acosta MA, Parra-Saldívar R, de Souza Vandenberghe LP, Faraco V. Multi-product biorefinery from Arthrospira platensis biomass as feedstock for bioethanol and lactic acid production. Sci Rep. 2021;11(1):1–15.

Article  Google Scholar 

Angermayr SA, van der Woude AD, Correddu D, Kern R, Hagemann M, Hellingwerf KJ. Chirality matters: synthesis and consumption of the d-enantiomer of lactic acid by Synechocystis sp. strain PCC6803. Appl Environ Microbiol. 2016;82(4):1295–304.

Article  Google Scholar 

Angermayr SA. Synthetic biology of cyanobacterial cell factories. Universiteit van Amsterdam [Host]; 2014.

Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol. 2013;24(3):405–13.

Article  Google Scholar 

Liu L, Pohnert G, Wei D. Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs. 2016;14(10):191.

Article  Google Scholar 

Carr FJ, Chill D, Maida N. The lactic acid bacteria: a literature survey. Crit Rev Microbiol. 2002;28(4):281–370.

Article  Google Scholar 

Nakata K, Miyazaki N, Yamaguchi H, Hirose M, Kashiwagi T, Kutumbarao NH, et al. High-resolution structure of phosphoketolase from Bifidobacterium longum determined by cryo-EM single-particle analysis. J Struct Biol. 2022;214(2):107842.

Article  Google Scholar 

Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 1983;49(3):209–24.

Article  Google Scholar 

Wood BJ, Holzapfel W. The genera of lactic acid bacteria. Springer Science & Business Media; 1992.

Vinderola G, Ouwehand A, Salminen S, von Wright A. Lactic acid bacteria: microbiological and functional aspects. Crc Press; 2019.

Porto MCW, Kuniyoshi TM, Azevedo P, Vitolo M, Oliveira RS. Pediococcus spp.: an important genus of lactic acid bacteria and pediocin producers. Biotechnol Adv. 2017;35(3):361–74.

Article  Google Scholar 

Zuniga M, Pardo I, Ferrer S. An improved medium for distinguishing between homofermentative and heterofermentative lactic acid bacteria. Int J Food Microbiol. 1993;18(1):37–42.

Article  Google Scholar 

Garvie EI. Bacterial lactate dehydrogenases. Microbiol Rev. 1980;44(1):106–39.

Article  Google Scholar 

Von Wright A, Axelsson L. Lactic acid bacteria: an introduction. Lactic acid bacteria. CRC Press; 2019. pp. 1–16.

Abedi E, Hashemi SMB. Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon. 2020;6(10):e04974.

Article  Google Scholar 

Wang L, Cai Y, Zhu L, Guo H, Yu B. Major role of NAD-dependent lactate dehydrogenases in the production of l-lactic acid with high optical purity by the thermophile Bacillus coagulans. Appl Environ Microbiol. 2014;80(23):7134–41.

Article  Google Scholar 

Lund J, Aas V, Tingstad RH, Van Hees A, Nikolić N. Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism. Sci Rep. 2018;8(1):1–14.

Article  Google Scholar 

Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv. 2013;31(6):877–902.

Article  Google Scholar 

Henard CA, Freed EF, Guarnieri MT. Phosphoketolase pathway engineering for carbon-efficient biocatalysis. Curr Opin Biotechnol. 2015;36:183–8.

Article  Google Scholar 

Mokoena MP. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules. 2017;22(8):1255.

Article  Google Scholar 

Wisselink H, Weusthuis R, Eggink G, Hugenholtz J, Grobben G. Mannitol production by lactic acid bacteria: a review. Int Dairy J. 2002;12(2–3):151–61.

Article  Google Scholar 

Salvetti E, Fondi M, Fani R, Torriani S, Felis GE. Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways. Syst Appl Microbiol. 2013;36(5):291–305.

Article  Google Scholar 

Berry M, Symposium. Advances in Liver Pathology [Abridged] The Liver and Lactic Acidosis. SAGE Publications; 1967.

Foucher CD, Tubben RE. Lactic acidosis. StatPearls [Internet]. StatPearls Publishing; 2021.

Tranquada RE. Lactic acidosis. Calif Med. 1964;101(6):450.

Google Scholar 

Zhao J, Xu L, Wang Y, Zhao X, Wang J, Garza E, et al. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb Cell Fact. 2013;12(1):1–6.

Article  Google Scholar 

Garlotta D. A literature review of poly (lactic acid). J Polym Environ. 2001;9(2):63–84.

Article  Google Scholar 

Kaplan DL. Introduction to biopolymers from renewable resources. Biopolymers from renewable resources. Springer; 1998. pp. 1–29.

Mehta R, Kumar V, Bhunia H, Upadhyay S. Synthesis of poly (lactic acid): a review. J Macromolecular Sci Part C: Polym Reviews. 2005;45(4):325–49.

Article  Google Scholar 

Jiang X, Luo Y, Tian X, Huang D, Reddy N, Yang Y. Chemical structure of poly (lactic acid). Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, and Applications. 2010:67–82.

Fambri L, Migliaresi C. Crystallization and thermal properties. Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life. 2022:135 – 51.

Vaid R, Yildirim E, Pasquinelli MA, King MW. Hydrolytic degradation of polylactic acid fibers as a function of pH and exposure time. Molecules. 2021;26(24):7554.

Article  Google Scholar 

Gonçalves CM, Coutinho JoA, Marrucho IM. Optical properties. Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, and Applications. 2010:97–112.

Perego G, Cella GD. Mechanical properties. Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, and Applications. 2010:141 – 53.

Almenar E, Auras R. Permeation, sorption, and diffusion in poly (lactic acid). Poly (lactic acid) synthesis, structure, properties, processing and applications Wiley, Hoboken. 2010:155 – 79.

Dorgan JR. Rheology of poly (lactic acid). Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life. 2022:153 – 67.

DeStefano V, Khan S, Tabada A. Applications of PLA in modern medicine. Eng Regeneration. 2020;1:76–87.

Article  Google Scholar 

Feng P, Jia J, Liu M, Peng S, Zhao Z, Shuai C. Degradation mechanisms and acceleration strategies of poly (lactic acid) scaffold for bone regeneration. Mater Design. 2021;210:110066. https://doi.org/10.1016/j.matdes.2021.110066.

留言 (0)

沒有登入
gif