Psychedelics: preclinical insights provide directions for future research

Nichols DE. Psychedelics. Pharm Rev. 2016;68:264–355. https://doi.org/10.1124/pr.115.011478.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McClure-Begley TD, Roth BL. The promises and perils of psychedelic pharmacology for psychiatry. Nat Rev Drug Discov. 2022;21:463–73. https://doi.org/10.1038/s41573-022-00421-7.

Article  CAS  PubMed  Google Scholar 

Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA, Richards BD, et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J Psychopharmacol. 2016;30:1181–97. https://doi.org/10.1177/0269881116675513.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol. 2016;30:1165–80. https://doi.org/10.1177/0269881116675512.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, et al. Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2021;78:481–9. https://doi.org/10.1001/jamapsychiatry.2020.3285.

Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, et al. Trial of psilocybin versus escitalopram for depression. N Engl J Med. 2021;384:1402–11. https://doi.org/10.1056/NEJMoa2032994.

Article  CAS  PubMed  Google Scholar 

Holze F, Gasser P, Muller F, Dolder PC, Liechti ME. Lysergic acid diethylamide-assisted therapy in patients with anxiety with and without a life-threatening illness: a randomized, double-blind, placebo-controlled Phase II study. Biol Psychiatry. 2023;93:215–23. https://doi.org/10.1016/j.biopsych.2022.08.025.

Goodwin GM, Aaronson ST, Alvarez O, Arden PC, Baker A, Bennett JC, et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N Engl J Med. 2022;387:1637–48. https://doi.org/10.1056/NEJMoa2206443.

Article  CAS  PubMed  Google Scholar 

Wooley DW, Shaw E. A biochemical and pharmacological suggestion about certain mental disorders. Proc Natl Acad Sci USA. 1954;40:228–31.

Article  Google Scholar 

Gaddum JH, Hameed KA. Drugs which antagonize 5-hydroxytryptamine. Br J Pharm. 1954;9:240–8.

CAS  Google Scholar 

Gaddum JH, Khan A, Hathway DE, Stephens FF. Quantitative studies of antagonists for 5-hydroxytryptamine. Q J Exp Physiol. 1955;40:49–74.

Article  CAS  PubMed  Google Scholar 

Aghjanian GK, Foote WE, Sheard MH. Lysergic acid diethylamide: sensitive neuronal units in the midbrain raphe. Science. 1968;161:706–8.

Article  Google Scholar 

Kelly PH, Iversen LL. LSD as an agonist at mesolimbic dopamine receptors. Psychopharmacologia. 1975;45:221–4.

Article  CAS  PubMed  Google Scholar 

Geyer MA, Gordon J, Adams LM. Behavioral effects of xylamine-induced depletions of brain norepinephrine: interaction with LSD. Pharm Biochem Behav. 1985;23:619–25.

Article  CAS  Google Scholar 

Peroutka SJ, Snyder SH. Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharm. 1979;16:687–99.

CAS  Google Scholar 

Glennon RA, Seggel MR, Soine WH, Herrick-Davis K, Lyon RA, Titeler M. 125I-2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI): an iodinated radioligand that specifically labels the agonist high affinity state of the 5HT2 serotonin receptor. J Med Chem. 1988;31:5–7.

Article  CAS  PubMed  Google Scholar 

Johnson MP, Hoffman AJ, Nichols DE, Mathis CA. Binding to the serotonin 5-HT2 receptor by the enantiomers of 125I-DOI. Neuropharmacology. 1987;26:1803–6. https://doi.org/10.1016/0028-3908(87)90138-9.

Article  CAS  PubMed  Google Scholar 

Kroeze WK, Sassano MF, Huang XP, Lansu K, McCorvy JD, Giguère PM, et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat Struct Mol Biol. 2015;22:362–9. https://doi.org/10.1038/nsmb.3014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corne SJ, Pickering RW, Warner BT. A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br J Pharm Chemother. 1963;20:106–20. https://doi.org/10.1111/j.1476-5381.1963.tb01302.x.

Article  CAS  Google Scholar 

Malick JB, Doren E, Barnett A. Quipazine-induced head-twitch in mice. Pharm Biochem Behav. 1977;6:325–9.

Article  CAS  Google Scholar 

Rodriguez R, Pardo EG. Quipazine, a new type of antidepressant agent. Psychopharmacologia. 1971;21:89–100. https://doi.org/10.1007/bf00404000.

Article  CAS  PubMed  Google Scholar 

Glennon RA, Titler M, McKenney JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 1984;35:2505–11.

Article  CAS  PubMed  Google Scholar 

Halberstadt AL, Chatha M, Klein AK, Wallach J, Brandt SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology. 2020;167:107933. https://doi.org/10.1016/j.neuropharm.2019.107933.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanders-Bush E, Burris KD, Knoth K. Lysergic acid diethylamide and 2,5-dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. J Pharmacol Exp Ther. 1988;246:924–8.

CAS  PubMed  Google Scholar 

Sard H, Kumaran G, Morency C, Roth BL, Toth BA, He P, et al. SAR of psilocybin analogs: discovery of a selective 5-HT(2C) agonist. Bioorg Med Chem Lett. 2005;15:4555–9.

Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM. [3H]-ketanserin (R 41 468) a selective 3H-ligand for serotonin2 receptor binding sites. Mol Pharmacol. 1982;21:301–14.

CAS  PubMed  Google Scholar 

Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport. 1998;9:3897–902.

Article  CAS  PubMed  Google Scholar 

Quednow BB, Kometer M, Geyer MA, Vollenweider FX. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology. 2012;37:630–40. https://doi.org/10.1038/npp.2011.228.

Kometer M, Schmidt A, Bachmann R, Studerus E, Seifritz E, Vollenweider FX. Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol Psychiatry. 2012;72:898–906. https://doi.org/10.1016/j.biopsych.2012.04.005.

Article  CAS  PubMed  Google Scholar 

Kometer M, Schmidt A, Jancke L, Vollenweider FX. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on alpha oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci. 2013;33:10544–51. https://doi.org/10.1523/JNEUROSCI.3007-12.2013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernasconi F, Schmidt A, Pokorny T, Kometer M, Seifritz E, Vollenweider FX. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin. Cereb Cortex. 2014;24:3221–31. https://doi.org/10.1093/cercor/bht178.

Article  PubMed  Google Scholar 

Pokorny T, Preller KH, Kraehenmann R, Vollenweider FX. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. Eur Neuropsychopharmacol. 2016;26:756–66. https://doi.org/10.1016/j.euroneuro.2016.01.005.

Article  CAS  PubMed  Google Scholar 

Barrett FS, Preller KH, Herdener M, Janata P, Vollenweider FX. Serotonin 2A receptor signaling underlies LSD-induced alteration of the neural response to dynamic changes in music. Cereb Cortex. 2018;28:3939–50. https://doi.org/10.1093/cercor/bhx257.

Article  PubMed  Google Scholar 

Preller KH, Burt JB, Ji JL, Schleifer CH, Adkinson BD, Stämpfli P, et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. Elife. 2018;7e35082. https://doi.org/10.7554/eLife.35082.

Abbas A, Roth B. Pimavanserin tartrate: a 5-HT2A inverse agonist with potential for treating various neuropsychiatric disorders. Expert Opin Pharmacother. 2008;9:3251–9. https://doi.org/10.1517/14656560802532707.

Article  CAS  PubMed  Google Scholar 

Sorensen SM, Kehne JH, Fadayel GM, Humphreys TM, Ketteler HJ, Sullivan CK, et al. Characterization of the 5-HT2 antagonist MDL 100907 as a putative atypical antipsychotic: behavioral, electrophysiological and neurochemical studies. J Pharmacol Exp Ther. 1993;266:684–91.

CAS  PubMed  Google Scholar 

Wacker D, Wang S, McCorvy JD, Betz RM, Venkatakrishnan AJ, Levit A, et al. Crystal structure of an LSD-bound human serotonin receptor. Cell. 2017;168:377–89.e312. https://doi.org/10.1016/j.cell.2016.12.033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim K, Che T, Panova O, DiBerto JF, Lyu J, Krumm BE. et al. Structure of a hallucinogen activated gq-coupled 5-HT2A serotonin receptor. Cell. 2020;182:1574–88.e1519. https://doi.org/10.1016/j.cell.2020.08.024.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaplan AL, Confair DN, Kim K, Barros-Álvarez X, Rodriguiz RM, Yang Y, et al. Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature. 2022;610:582–91. https://doi.org/10.1038/s41586-022-05258-z.

Article  CAS  PubMed  Google Scholar 

Cao D, Yu J, Wang H, Luo Z, Liu X, He L, et al. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science. 2022;375:403–11. https://doi.org/10.1126/science.abl8615.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif