Impact of the gut microbiome on nicotine’s motivational effects and glial cells in the ventral tegmental area in male mice

Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross talk: the microbiota and neurodevelopmental disorders. Front Neurosci. 2017;11:490.

Article  PubMed  PubMed Central  Google Scholar 

Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress. 2017;7:124–36.

Article  PubMed  PubMed Central  Google Scholar 

Meckel KR, Kiraly DD. A potential role for the gut microbiome in substance use disorders. Psychopharmacology. 2019;236:1513–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le Foll B, Piper ME, Fowler CD, Tonstad S, Bierut L, Lu L, et al. Tobacco and nicotine use. Nat Rev Dis Prim. 2022;8:19.

Article  PubMed  Google Scholar 

Prochaska JJ, Benowitz NL. Current advances in research in treatment and recovery: nicotine addiction. Sci Adv. 2019;5:eaay9763.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dome P, Lazary J, Kalapos MP, Rihmer Z. Smoking, nicotine and neuropsychiatric disorders. Neurosci Biobehav Rev. 2010;34:295–342.

Article  CAS  PubMed  Google Scholar 

Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev. 2007;56:27–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Chiara G, Bassareo V. Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharm. 2007;7:69–76.

Article  Google Scholar 

Ikemoto S, Bonci A. Neurocircuitry of drug reward. Neuropharmacology .2014;76 Pt B:329–41.

Article  PubMed  Google Scholar 

Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell .2016;165:1762–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron .2019;101:246–59.e6.

Article  CAS  PubMed  Google Scholar 

Kiraly DD, Walker DM, Calipari ES, Labonte B, Issler O, Pena CJ, et al. Alterations of the host microbiome affect behavioral responses to cocaine. Sci Rep. 2016;6:35455.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee K, Vuong HE, Nusbaum DJ, Hsiao EY, Evans CJ, Taylor AMW. The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence. Neuropsychopharmacology .2018;43:2606–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engel JA, Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: implications for pharmacotherapy. CNS Drugs. 2014;28:875–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linker KE, Cross SJ, Leslie FM. Glial mechanisms underlying substance use disorders. Eur J Neurosci. 2019;50:2574–89.

Article  CAS  PubMed  Google Scholar 

Anbalagan S. Endocrine cross-talk between the gut microbiome and glial cells in development and disease. J Neuroendocrinol. 2021;33:e12924.

Article  CAS  PubMed  Google Scholar 

Mossad O, Erny D. The microbiota-microglia axis in central nervous system disorders. Brain Pathol. 2020;30:1159–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell .2018;172:500–16.e16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology .2011;141:599–609. 09.e1-3

Article  CAS  PubMed  Google Scholar 

Husson M, Harrington L, Tochon L, Cho Y, Ibanez-Tallon I, Maskos U, et al. beta4-Nicotinic receptors are critically involved in reward-related behaviors and self-regulation of nicotine reinforcement. J Neurosci. 2020;40:3465–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP, et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature .2005;436:103–7.

Article  CAS  PubMed  Google Scholar 

Tolu S, Eddine R, Marti F, David V, Graupner M, Pons S, et al. Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement. Mol Psychiatry. 2013;18:382–93.

Article  CAS  PubMed  Google Scholar 

Besson M, Granon S, Mameli-Engvall M, Cloez-Tayarani I, Maubourguet N, Cormier A, et al. Long-term effects of chronic nicotine exposure on brain nicotinic receptors. Proc Natl Acad Sci USA. 2007;104:8155–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saravia R, Flores A, Plaza-Zabala A, Busquets-Garcia A, Pastor A, de la Torre R, et al. CB1 cannabinoid receptors mediate cognitive deficits and structural plasticity changes during nicotine withdrawal. Biol Psychiatry. 2017;81:625–34.

Article  CAS  PubMed  Google Scholar 

Verdonk F, Roux P, Flamant P, Fiette L, Bozza FA, Simard S, et al. Phenotypic clustering: a novel method for microglial morphology analysis. J Neuroinflammation. 2016;13:153.

Article  PubMed  PubMed Central  Google Scholar 

Ge X, Ding C, Zhao W, Xu L, Tian H, Gong J, et al. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med. 2017;15:13.

Article  PubMed  PubMed Central  Google Scholar 

Kovacs KJ. c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int. 1998;33:287–97.

Article  CAS  PubMed  Google Scholar 

Zhao-Shea R, Liu L, Soll LG, Improgo MR, Meyers EE, McIntosh JM, et al. Nicotine-mediated activation of dopaminergic neurons in distinct regions of the ventral tegmental area. Neuropsychopharmacology . 2011;36:1021–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramaniyan M, Dani JA. Dopaminergic and cholinergic learning mechanisms in nicotine addiction. Ann N.Y Acad Sci. 2015;1349:46–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ables JL, Gorlich A, Antolin-Fontes B, Wang C, Lipford SM, Riad MH, et al. Retrograde inhibition by a specific subset of interpeduncular alpha5 nicotinic neurons regulates nicotine preference. Proc Natl Acad Sci USA. 2017;114:13012–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harrington L, Vinals X, Herrera-Solis A, Flores A, Morel C, Tolu S, et al. Role of beta4* nicotinic acetylcholine receptors in the habenulo-interpeduncular pathway in nicotine reinforcement in mice. Neuropsychopharmacology .2016;41:1790–802.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morton G, Nasirova N, Sparks DW, Brodsky M, Sivakumaran S, Lambe EK, et al. Chrna5-expressing neurons in the interpeduncular nucleus mediate aversion primed by prior stimulation or nicotine exposure. J Neurosci. 2018;38:6900–20.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif