The implication of Mycobacterium tuberculosis-mediated metabolism of targeted xenobiotics

World Health Organization. Global tuberculosis report (WHO, 2022).

Segal, L. N. et al. Anaerobic bacterial fermentation products increase tuberculosis risk in antiretroviral-drug-treated HIV patients. Cell Host Microbe 21, 530–537.e4 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghajavand, H. et al. High prevalence of bedaquiline resistance in treatment-naive tuberculosis patients and verapamil effectiveness. Antimicrob. Agents Chemother. 63, e02530-18 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Nimmo, C. et al. Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis. Lancet Microbe 1, e165–e174 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Villellas, C. et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J. Antimicrob. Chemother. 72, 684–690 (2017).

CAS  PubMed  Google Scholar 

Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen, S. B. et al. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24, 439–446.e4 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, L., Nazarova, E. V., Tan, S., Liu, Y. & Russell, D. G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215, 1135–1152 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pearce, E. L. & Pearce, E. J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

Article  CAS  PubMed  Google Scholar 

Namasivayam, S., Sher, A., Glickman, M. S. & Wipperman, M. F. The microbiome and tuberculosis: early evidence for cross talk. mBio 9, e01420-18 (2018). This thought-provoking review discusses how the microbiome may influence the TB infection/life cycle.

Article  PubMed  PubMed Central  Google Scholar 

Patel, M., Taskar, K. S. & Zamek-Gliszczynski, M. J. Importance of hepatic transporters in clinical disposition of drugs and their metabolites. J. Clin. Pharmacol. 56, S23–S39 (2016).

Article  CAS  PubMed  Google Scholar 

Chen, W., Biswas, T., Porter, V. R., Tsodikov, O. V. & Garneau-Tsodikova, S. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc. Natl Acad. Sci. USA 108, 9804–9808 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barry, C. E. III et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845–855 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jansen, R. S. et al. Aspartate aminotransferase Rv3722c governs aspartate-dependent nitrogen metabolism in Mycobacterium tuberculosis. Nat. Commun. 11, 1960 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awasthi, D. & Freundlich, J. S. Antimycobacterial metabolism: illuminating Mycobacterium tuberculosis biology and drug discovery. Trends Microbiol. 25, 756–767 (2017). This review describes antimycobacterial metabolism and associated reactions.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aragaw, W. W. et al. Potency boost of a Mycobacterium tuberculosis dihydrofolate reductase inhibitor by multienzyme F420H2-dependent reduction. Proc. Natl Acad. Sci. USA 118, e2025172118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, X. et al. 1,3,5-Triazaspiro[5.5]undeca-2,4-dienes as selective Mycobacterium tuberculosis dihydrofolate reductase inhibitors with potent whole cell activity. Eur. J. Med. Chem. 144, 262–276 (2018).

Article  CAS  PubMed  Google Scholar 

Zheng, P. et al. Synthetic calanolides with bactericidal activity against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem. 57, 3755–3772 (2014).

Article  CAS  PubMed  Google Scholar 

Negri, A. et al. Identification of a mycothiol-dependent nitroreductase from Mycobacterium tuberculosis. ACS Infect. Dis. 4, 771–787 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Albesa-Jove, D. et al. Rv2466c mediates the activation of TP053 to kill replicating and non-replicating Mycobacterium tuberculosis. ACS Chem. Biol. 9, 1567–1575 (2014).

Article  CAS  PubMed  Google Scholar 

Chiarelli, L. R. et al. New insights into the mechanism of action of the thienopyrimidine antitubercular prodrug TP053. ACS Infect. Dis. 6, 313–323 (2020).

Article  CAS  PubMed  Google Scholar 

Monakhova, N. et al. Design and synthesis of pyrano[3,2-b]indolones showing antimycobacterial activity. ACS Infect. Dis. 7, 88–100 (2021).

Article  CAS  PubMed  Google Scholar 

Moure, A. L. et al. MymA bioactivated thioalkylbenzoxazole prodrug family active against Mycobacterium tuberculosis. J. Med. Chem. 63, 4732–4748 (2020).

Article  CAS  PubMed  Google Scholar 

Flipo, M. et al. The small-molecule SMARt751 reverses Mycobacterium tuberculosis resistance to ethionamide in acute and chronic mouse models of tuberculosis. Sci. Transl Med. 14, 6280 (2022). This study emphasizes the role of metabolic knowledge in designing a compound that reverses the resistance mechanism of the target drug.

Article  Google Scholar 

Saraav, I., Singh, S., Pandey, K., Sharma, M. & Sharma, S. Mycobacterium tuberculosis MymA is a TLR2 agonist that activate macrophages and a TH1 response. Tuberculosis 106, 16–24 (2017).

Article  CAS  PubMed  Google Scholar 

Lott, J. S. The tryptophan biosynthetic pathway is essential for Mycobacterium tuberculosis to cause disease. Biochem. Soc. Trans. 48, 2029–2037 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Libardo, M. D. J. et al. Resistance of Mycobacterium tuberculosis to indole 4-carboxamides occurs through alterations in drug metabolism and tryptophan biosynthesis. Cell Chem. Biol. 28, e1120 (2021).

Article  Google Scholar 

van der Westhuyzen, R. et al. Pyrrolo[3,4-c]pyridine-1,3(2H)-diones: a novel antimycobacterial class targeting mycobacterial respiration. J. Med. Chem. 58, 9371–9381 (2015).

Article  PubMed  Google Scholar 

van der Westhuyzen, R. et al. Benzoheterocyclic oxime carbamates active against Mycobacterium tuberculosis: synthesis, structure–activity relationship, metabolism, and biology triaging. J. Med. Chem. 64, 9444–9457 (2021).

Article  PubMed  Google Scholar 

Njoroge, M. et al. Semisynthetic antimycobacterial C-3 silicate and C-3/C-21 ester derivatives of fusidic acid: pharmacological evaluation and stability studies in liver microsomes, rat plasma, and Mycobacterium tuberculosis culture. ACS Infect. Dis. 5, 1634–1644 (2019). This study addresses the metabolic liability of fusidic acid.

Article  CAS  PubMed  Google Scholar 

Strydom, N. et al. Pharmacokinetics and organ distribution of C-3 alkyl esters as potential antimycobacterial prodrugs of fusidic acid. ACS Infect. Dis. 6, 459–466 (2020).

Article  CAS  PubMed  Google Scholar 

Sahm, D. F., Deane, J., Pillar, C. M. & Fernandes, P. In vitro activity of CEM-102 (fusidic acid) against prevalent clones and resistant phenotypes of Staphylococcus aureus. Antimicrob. Agents Chemother. 57, 4535–4536 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, V., Dziwornu, G. A., Mabhula, A. & Chibale, K. Rv0684/fusA1, an essential gene, is the target of fusidic acid and its derivatives in Mycobacterium tuberculosis. ACS Infect. Dis. 7, 2437–2444 (2021).

Article  CAS  PubMed  Google Scholar 

Chakraborty, S., Gruber, T., Barry, C. E. III, Boshoff, H. I. & Rhee, K. Y. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science 339, 88–91 (2013).

Article  CAS  PubMed  Google Scholar 

Dawadi, S., Kordus, S. L., Baughn, A. D. & Aldrich, C. C. Synthesis and analysis of bacterial folate metabolism intermediates and antifolates. Org. Lett. 19, 5220–5223 (2017).

Article  CAS  PubMed  Google Scholar 

Bockman, M. R. et al. Targeting Mycobacterium tuberculosis biotin protein ligase (MtBPL) with nucleoside-based bisubstrate adenylation inhibitors. J. Med. Chem. 58, 7349–7369 (2015).

留言 (0)

沒有登入
gif