Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets

Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285–95.

Article  PubMed  Google Scholar 

Widmer RJ, Lerman A. Endothelial dysfunction and cardiovascular disease. Glob Cardiol Sci Pract. 2014;2014(3):291–308.

PubMed  PubMed Central  Google Scholar 

Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15(8):1983–92.

Article  CAS  PubMed  Google Scholar 

Michiels C. Endothelial cell functions. J Cell Physiol. 2003;196(3):430–43.

Article  CAS  PubMed  Google Scholar 

Farah C, Michel LYM, Balligand J-L. Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol. 2018;15(5):292–316. https://doi.org/10.1038/nrcardio.2017.224.

Article  CAS  PubMed  Google Scholar 

SoRelle R. Nobel prize awarded to scientists for nitric oxide discoveries. Circulation. 1998;98:2365–6.

Article  CAS  PubMed  Google Scholar 

Montfort WR, Wales JA, Weichsel A. Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxid Redox Signal. 2017;26(3):107–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62(3):525–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walford G, Loscalzo J. Nitric oxide in vascular biology. J Thromb Haemost. 2003;1(10):2112–8. https://doi.org/10.1046/j.1538-7836.2003.00345.x.

Article  CAS  PubMed  Google Scholar 

Münzel T, Feil R, Mülsch A, Lohmann SM, Hofmann F, Walter U. Physiology and pathophysiology of vascular signaling controlled by cyclic guanosine 3-cyclic monophosphate dependent protein kinase. Circulation. 2003;108(18):2172–83.

Article  PubMed  Google Scholar 

Carreau A, Kieda C, Grillon C. Nitric oxide modulates the expression of endothelial cell adhesion molecules involved in angiogenesis and leukocyte recruitment. Exp Cell Res. 2011;317(1):29–41.

Article  CAS  PubMed  Google Scholar 

Naseem KM. The role of nitric oxide in cardiovascular diseases. Mol Aspects Med. 2005;26(1):33–65.

Article  CAS  PubMed  Google Scholar 

Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–837d.

Article  PubMed  Google Scholar 

Esplugues JV. NO as a signalling molecule in the nervous system. Br J Pharmacol. 2002;135(5):1079–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2(10):907–16.

Article  CAS  PubMed  Google Scholar 

Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996;271(5 Pt 1):C1424–37.

Article  CAS  PubMed  Google Scholar 

Cervantes Gracia K, Llanas-Cornejo D, Husi H. CVD and oxidative stress. J Clin Med. 2017;6(2):22.

Article  PubMed  PubMed Central  Google Scholar 

Karbach S, Wenzel P, Waisman A, Munzel T, Daiber A. eNOS uncoupling in cardiovascular diseases–the role of oxidative stress and inflammation. Curr Pharm Des. 2014;20(22):3579–94.

Article  CAS  PubMed  Google Scholar 

Förstermann U. Endothelial NO synthase as a source of NO and superoxide. Eur J Clin Pharmacol. 2006;62(1):5–12. https://doi.org/10.1007/s00228-005-0006-x.

Article  CAS  Google Scholar 

Kalinowski L, Malinski T. Endothelial NADH/NADPH-dependent enzymatic sources of superoxide production: relationship to endothelial dysfunction. Acta Biochim Pol. 2004;51(2):459–69.

Article  CAS  PubMed  Google Scholar 

Kalinowski L, Dobrucki IT, Malinski T. Race-specific differences in endothelial function: predisposition of African Americans to vascular diseases. Circulation. 2004;109(21):2511–7.

Article  PubMed  Google Scholar 

Dobrucki LW, Marsh BJ, Kalinowski L. Elucidating structure-function relationships from molecule-to-cell-to-tissue: from research modalities to clinical realities. J Physiol Pharmacol an Off J Polish Physiol Soc. 2009;60(Suppl 4):83–93.

Google Scholar 

Thum T, Fraccarollo D, Schultheiss M, Froese S, Galuppo P, Widder JD, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes. 2007;56(3):666–74.

Article  CAS  PubMed  Google Scholar 

Cassuto J, Dou H, Czikora I, Szabo A, Patel VS, Kamath V, et al. Peroxynitrite disrupts endothelial caveolae leading to eNOS uncoupling and diminished flow-mediated dilation in coronary arterioles of diabetic patients. Diabetes. 2014;63(4):1381–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Etten RW, de Koning EJP, Verhaar MC, Gaillard CAJM, Rabelink TJ. Impaired NO-dependent vasodilation in patients with Type II (non-insulin-dependent) diabetes mellitus is restored by acute administration of folate. Diabetologia. 2002;45(7):1004–10.

Article  PubMed  Google Scholar 

Higashi Y, Sasaki S, Nakagawa K, Fukuda Y, Matsuura H, Oshima T, et al. Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals*. Am J Hypertens. 2002;15(4):326–32. https://doi.org/10.1016/S0895-7061(01)02317-2.

Article  CAS  PubMed  Google Scholar 

Antoniades C, Shirodaria C, Warrick N, Cai S, de Bono J, Lee J, et al. 5-Methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels. Circulation. 2006;114(11):1193–201.

Article  CAS  PubMed  Google Scholar 

Dixon LJ, Morgan DR, Hughes SM, McGrath LT, El-Sherbeeny NA, Plumb RD, et al. Functional consequences of endothelial nitric oxide synthase uncoupling in congestive cardiac failure. Circulation. 2003;107(13):1725–8.

Article  CAS  PubMed  Google Scholar 

Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111(8):1201–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88(2):e14-22. https://doi.org/10.1161/01.RES.88.2.e14.

Article  CAS  PubMed  Google Scholar 

Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS, et al. High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury. Circulation. 2008;117(14):1810–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janaszak-Jasiecka A, Siekierzycka A, Płoska A, Dobrucki IT, Kalinowski L. Endothelial dysfunction driven by hypoxia—the influence of oxygen deficiency on NO bioavailability. Biomolecules. 2021;11:34.

Article  Google Scholar 

Yang Y-M, Huang A, Kaley G, Sun D. eNOS uncoupling and endothelial dysfunction in aged vessels. Am J Physiol Circ Physiol. 2009;297(5):H1829–36. https://doi.org/10.1152/ajpheart.00230.2009.

Article  CAS  Google Scholar 

Lee H-Y, Zeeshan HMA, Kim H-R, Chae H-J. Nox4 regulates the eNOS uncoupling process in aging endothelial cells. Free Radic Biol Med. 2017;113:26–35.

Article  CAS  PubMed  Google Scholar 

De Pascali F, Hemann C, Samons K, Chen C-A, Zweier JL. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry. 2014;53(22):3679–88.

Article  PubMed  Google Scholar 

Aoyagi M, Arvai AS, Tainer JA, Getzoff ED. Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J. 2003;22(4):766–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, et al. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J Endocrinol. 2011;210(3):271–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif