Attenuation of IFN signaling due to m6A modification of the host epitranscriptome promotes EBV lytic reactivation

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6(1):74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu F, Cheng W, Zhao F, Tang M, Diao Y, Xu R. Association of N6-methyladenosine with viruses and virally induced diseases. Front Biosci (Landmark Ed). 2020;25:1184–201.

Article  PubMed  Google Scholar 

Gokhale NS, McIntyre ABR, McFadden MJ, Roder AE, Kennedy EM, Gandara JA, et al. N6-Methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host Microbe. 2016;20(5):654–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lichinchi G, Zhao BS, Wu Y, Lu Z, Qin Y, He C, et al. Dynamics of Human and viral RNA methylation during Zika Virus infection. Cell Host Microbe. 2016;20(5):666–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan B, Liu H, Zhang S, da Silva SR, Zhang L, Meng J, et al. Viral and cellular N(6)-methyladenosine and N(6),2’-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nat Microbiol. 2018;3(1):108–20.

Article  CAS  PubMed  Google Scholar 

Xia TL, Li X, Wang X, Zhu YJ, Zhang H, Cheng W, et al. N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Rep. 2021;22(4):e50128.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu M, Zhang Z, Xue M, Zhao BS, Harder O, Li A, et al. N(6)-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol. 2020;5(4):584–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winkler R, Gillis E, Lasman L, Safra M, Geula S, Soyris C, et al. M(6)a modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol. 2019;20(2):173–82.

Article  CAS  PubMed  Google Scholar 

Li N, Hui H, Bray B, Gonzalez GM, Zeller M, Anderson KG, et al. METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection. Cell Rep. 2021;35(6):109091.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim GW, Imam H, Khan M, Mir SA, Kim SJ, Yoon SK, et al. HBV-Induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC. Hepatology. 2021;73(2):533–47.

Article  CAS  PubMed  Google Scholar 

Rubio RM, Depledge DP, Bianco C, Thompson L, Mohr I. RNA m(6) a modification enzymes shape innate responses to DNA by regulating interferon beta. Genes Dev. 2018;32(23–24):1472–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87–103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Majoros A, Platanitis E, Kernbauer-Holzl E, Rosebrock F, Muller M, Decker T. Canonical and non-canonical aspects of JAK-STAT signaling: Lessons from Interferons for Cytokine responses. Front Immunol. 2017;8:29.

Article  PubMed  PubMed Central  Google Scholar 

Teijaro JR. Type I interferons in viral control and immune regulation. Curr Opin Virol. 2016;16:31–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, et al. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther. 2021;6(1):15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farrell PJ. Epstein-Barr Virus and Cancer. Annu Rev Pathol. 2019;14:29–53.

Article  CAS  PubMed  Google Scholar 

Miller G, El-Guindy A, Countryman J, Ye J, Gradoville L. Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res. 2007;97:81–109.

Article  CAS  PubMed  Google Scholar 

Kempkes B, Robertson ES. Epstein-Barr virus latency: current and future perspectives. Curr Opin Virol. 2015;14:138–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, He C, Wu J, Yang D, Yi W. Epstein barr virus encodes miRNAs to assist host immune escape. J Cancer. 2020;11(8):2091–100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iizasa H, Kim H, Kartika AV, Kanehiro Y, Yoshiyama H. Role of viral and host microRNAs in Immune Regulation of Epstein-Barr Virus-Associated Diseases. Front Immunol. 2020;11:367.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ressing ME, van Gent M, Gram AM, Hooykaas MJ, Piersma SJ, Wiertz EJ. Immune Evasion by Epstein-Barr Virus. Curr Top Microbiol Immunol. 2015;391:355–81.

CAS  PubMed  Google Scholar 

Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73. Table of Contents.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003;4(5):491–6.

Article  CAS  PubMed  Google Scholar 

Miyahira AK, Shahangian A, Hwang S, Sun R, Cheng G. TANK-binding kinase-1 plays an important role during in vitro and in vivo type I IFN responses to DNA virus infections. J Immunol. 2009;182(4):2248–57.

Article  CAS  PubMed  Google Scholar 

Charoenthongtrakul S, Gao L, Harhaj EW. The NLRP4-DTX4 axis: a key suppressor of TBK1 and innate antiviral signaling. Cell Mol Immunol. 2012;9(6):431–3.

Article  PubMed  PubMed Central  Google Scholar 

Su L, David M. Distinct mechanisms of STAT phosphorylation via the interferon-alpha/beta receptor. Selective inhibition of STAT3 and STAT5 by piceatannol. J Biol Chem. 2000;275(17):12661–6.

Article  CAS  PubMed  Google Scholar 

Lang F, Singh RK, Pei Y, Zhang S, Sun K, Robertson ES. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLoS Pathog. 2019;15(6):e1007796.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cotter MA 2nd, Robertson ES. The latency-associated nuclear antigen tethers the Kaposi’s sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology. 1999;264(2):254–64.

Article  CAS  PubMed  Google Scholar 

Edelheit O, Hanukoglu A, Hanukoglu I. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol. 2009;9:61.

Article  PubMed  PubMed Central  Google Scholar 

Singh RK, Lang F, Pei Y, Jha HC, Robertson ES. Metabolic reprogramming of Kaposi’s sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog. 2018;14(5):e1007062.

Article  PubMed  PubMed Central  Google Scholar 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

Article  PubMed  PubMed Central  Google Scholar 

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bailey TL. STREME: Accurate and versatile sequence motif discovery. Bioinformatics. 2021.

Kumar Singh R, Pei Y, Bose D, Lamplugh ZL, Sun K, Yuan Y et al. KSHV-encoded vCyclin can modulate HIF1alpha levels to promote DNA replication in hypoxia. Elife. 2021;10.

留言 (0)

沒有登入
gif