Hemodynamic parameters at rest predicting exercise capacity in patients supported with left ventricular assist device

Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

Article  CAS  PubMed  Google Scholar 

Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

Article  CAS  PubMed  Google Scholar 

Rogers JG, Aaronson KD, Boyle AJ, Russell SD, Milano CA, Pagani FD, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55:1826–34.

Article  PubMed  Google Scholar 

Leibner ES, Cysyk J, Eleuteri K, El-Banayosy A, Boehmer JP, Pae WE. Changes in the functional status measures of heart failure patients with mechanical assist devices. ASAIO J. 2013;59:117–22.

Article  PubMed  Google Scholar 

Jung MH, Gustafsson F. Exercise in heart failure patients supported with a left ventricular assist device. J Heart Lung Transplant. 2015;34:489–96.

Article  PubMed  Google Scholar 

Benton CR, Sayer G, Nair AP, Ashley K, Domanski MJ, Henzlova MJ, et al. Left ventricular assist devices improve functional class without normalizing peak oxygen consumption. ASAIO J. 2015;61:237–43.

Article  CAS  PubMed  Google Scholar 

Dorken Gallastegi A, Ergi GD, Kahraman Ü, Yağmur B, Çinar E, Karapolat H, et al. Prognostic value of cardiopulmonary exercise test parameters in ventricular assist device therapy. ASAIO J. 2022;68:808–13.

Article  PubMed  Google Scholar 

Hasin T, Topilsky Y, Kremers WK, Boilson BA, Schirger JA, Edwards BS, et al. Usefulness of the six-minute walk test after continuous axial flow left ventricular device implantation to predict survival. Am J Cardiol. 2012;110:1322–8.

Article  PubMed  PubMed Central  Google Scholar 

Malhotra R, Bakken K, D’Elia E, Lewis GD. Cardiopulmonary exercise testing in heart failure. JACC Heart Fail. 2016;4:607–16.

Article  PubMed  Google Scholar 

Corrà U, Agostoni PG, Anker SD, Coats AJS, Crespo Leiro MG, de Boer RA, et al. Role of cardiopulmonary exercise testing in clinical stratification in heart failure. A position paper from the committee on exercise physiology and training of the heart failure association of the European society of cardiology. Eur J Heart Fail. 2018;20:3–15.

Article  PubMed  Google Scholar 

Moss N, Rakita V, Lala A, Parikh A, Roldan J, Mitter SS, et al. Hemodynamic response to exercise in patients supported by continuous flow left ventricular assist devices. JACC Heart Fail. 2020;8:291–301.

Article  PubMed  Google Scholar 

Loyaga-Rendon RY, Plaisance EP, Arena R, Shah K. Exercise physiology, testing, and training in patients supported by a left ventricular assist device. J Heart Lung Transplant. 2015;34:1005–16.

Article  PubMed  Google Scholar 

Kondo T, Yamada S, Asai C, Okumura T, Tanimura D, Murohara T. Skeletal muscle pump function is associated with exercise capacity in patients with heart failure. Circ J. 2018;82:1033–40.

Article  CAS  PubMed  Google Scholar 

Jung MH, Hansen PB, Sander K, Olsen PS, Rossing K, Boesgaard S, et al. Effect of increasing pump speed during exercise on peak oxygen uptake in heart failure patients supported with a continuous-flow left ventricular assist device. A double-blind randomized study. Eur J Heart Fail. 2014;16:403–8.

Article  CAS  PubMed  Google Scholar 

Vignati C, Apostolo A, Cattadori G, Farina S, Del Torto A, Scuri S, et al. Lvad pump speed increase is associated with increased peak exercise cardiac output and vo2, postponed anaerobic threshold and improved ventilatory efficiency. Int J Cardiol. 2017;230:28–32.

Article  PubMed  Google Scholar 

Gopalan RS, Arabia FA, Noel P, Chandrasekaran K. Hemolysis from aortic regurgitation mimicking pump thrombosis in a patient with a HeartMate II left ventricular assist device: a case report. ASAIO J. 2012;58:278–80.

Article  PubMed  Google Scholar 

Hayward CS, Salamonsen R, Keogh AM, Woodard J, Ayre P, Prichard R, et al. Effect of alteration in pump speed on pump output and left ventricular filling with continuous-flow left ventricular assist device. ASAIO J. 2011;57:495–500.

Article  PubMed  Google Scholar 

Pedrotty DM, Rame JE, Margulies KB. Management of ventricular arrhythmias in patients with ventricular assist devices. Curr Opin Cardiol. 2013;28:360–8.

Article  PubMed  Google Scholar 

Holtz J, Teuteberg J. Management of aortic insufficiency in the continuous flow left ventricular assist device population. Curr Heart Fail Rep. 2014;11:103–10.

Article  PubMed  Google Scholar 

Imamura T, Nguyen A, Kim G, Raikhelkar J, Sarswat N, Kalantari S, et al. Optimal haemodynamics during left ventricular assist device support are associated with reduced haemocompatibility-related adverse events. Eur J Heart Fail. 2019;21:655–62.

Article  PubMed  Google Scholar 

Imamura T, Jeevanandam V, Kim G, Raikhelkar J, Sarswat N, Kalantari S, et al. Optimal hemodynamics during left ventricular assist device support are associated with reduced readmission rates. Circ Heart Fail. 2019;12: e005094.

Article  PubMed  PubMed Central  Google Scholar 

Wiegmann L, Thamsen B, de Zélicourt D, Granegger M, Boës S, Schmid Daners M, et al. Fluid dynamics in the HeartMate 3: influence of the artificial pulse feature and residual cardiac pulsation. Artif Organs. 2019;43:363–76.

Article  PubMed  Google Scholar 

Bouzas-Cruz N, Koshy A, Gonzalez-Fernandez O, Ferrera C, Green T, Okwose NC, et al. Markers of right ventricular dysfunction predict maximal exercise capacity after left ventricular assist device implantation. ASAIO J. 2021;67:284–9.

Article  PubMed  Google Scholar 

Frazier OH, Myers TJ, Gregoric ID, Khan T, Delgado R, Croitoru M, et al. Initial clinical experience with the Jarvik 2000 implantable axial-flow left ventricular assist system. Circulation. 2002;105:2855–60.

Article  CAS  PubMed  Google Scholar 

Truby LK, Garan AR, Givens RC, Wayda B, Takeda K, Yuzefpolskaya M, et al. Aortic insufficiency during contemporary left ventricular assist device support: analysis of the INTERMACS registry. JACC Heart Fail. 2018;6:951–60.

Article  PubMed  PubMed Central  Google Scholar 

Dunlay SM, Allison TG, Pereira NL. Changes in cardiopulmonary exercise testing parameters following continuous flow left ventricular assist device implantation and heart transplantation. J Card Fail. 2014;20:548–54.

Article  PubMed  PubMed Central  Google Scholar 

Kondo T, Okumura T, Oishi H, Arao Y, Kato H, Yamaguchi S, et al. Associations between hemodynamic parameters at rest and exercise capacity in patients with implantable left ventricular assist devices. Int J Artif Organs. 2021;44:174–80.

Article  CAS  PubMed  Google Scholar 

Schmidt T, Bjarnason-Wehrens B, Mommertz S, Hannig M, Schulte-Eistrup S, Willemsen D, et al. Changes in total cardiac output and oxygen extraction during exercise in patients supported with an HVAD left ventricular assist device. Artif Organs. 2018;42:686–94.

Article  CAS  PubMed  Google Scholar 

Rosenbaum AN, Dunlay SM, Pereira NL, Allison TG, Maltais S, Stulak JM, et al. Determinants of improvement in cardiopulmonary exercise testing after left ventricular assist device implantation. ASAIO J. 2018;64:610–5.

Article  PubMed  Google Scholar 

Mirza KK, Cuomo K, Jung MH, Russell SD, Gustafsson F. Effect of Heart Rate Reserve on exercise capacity in patients treated with a continuous left ventricular assist device. ASAIO J. 2020;66:160–5.

Article  PubMed  Google Scholar 

Koshy A, Bouzas-Cruz N, Okwose NC, Fernandez OG, Green T, Woods A, et al. Left ventricular filling pressures contribute to exercise limitation in patients with continuous flow left ventricular assist devices. ASAIO J. 2020;66:247–52.

Article  PubMed  Google Scholar 

Li S, Beckman JA, Welch NG, Bjelkengren J, Masri SC, Minami E, et al. Accuracy of Doppler blood pressure measurement in continuous-flow left ventricular assist device patients. ESC Heart Fail. 2019;6:793–8.

Article  PubMed  PubMed Central  Google Scholar 

Tanaka A, Kiriyama Y, Kubo N, Sakaguchi R, Uchiyama A, Fujino Y. Noninvasive blood pressure measurement in patients with continuous-flow left ventricular assist devices. J Artif Organs. 2023. https://doi.org/10.1007/s10047-022-01349-w.

Article  Google Scholar 

Gross C, Marko C, Mikl J, Altenberger J, Schlöglhofer T, Schima H, et al. LVAD pump flow does not adequately increase with exercise. Artif Organs. 2019;43:222–8.

Article  CAS  PubMed  Google Scholar 

Imamura T, Kinugawa K, Nitta D, Inaba T, Maki H, Hatano M, et al. Opening of native aortic valve accomplished after left ventricular assist device implantation in patients with insufficient preoperative beta-blocker treatment. Int Heart J. 2015;56:303–8.

Article  PubMed  Google Scholar 

Myers TJ, Bolmers M, Gregoric ID, Kar B, Frazier OH. Assessment of arterial blood pressure during support with an axial flow left ventricular assist device. J Heart Lung Transplant. 2009;28:423–7.

Article  PubMed  Google Scholar 

Pak SW, Uriel N, Takayama H, Cappleman S, Song R, Colombo PC, et al. Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J Heart Lung Transplant. 2010;29:1172–6.

Article  PubMed  Google Scholar 

Jorde UP, Uriel N, Nahumi N, Bejar D, Gonzalez-Costello J, Thomas SS, et al. Prevalence, significance, and management of aortic insufficiency in continuous flow left ventricular assist device recipients. Circ Heart Fail. 2014;7:310–9.

留言 (0)

沒有登入
gif