Exhausted intratumoral Vδ2− γδ T cells in human kidney cancer retain effector function

Shih, K., Arkenau, H.-T. & Infante, J. R. Clinical impact of checkpoint inhibitors as novel cancer therapies. Drugs 74, 1993–2013 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lalani, A.-K. A. et al. Systemic treatment of metastatic clear cell renal cell carcinoma in 2018: current paradigms, use of immunotherapy, and future directions. Eur. Urol. 75, 100–110 (2019).

Article  PubMed  Google Scholar 

Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ascierto, P. A. et al. Adjuvant nivolumab versus ipilimumab in resected stage IIIB–C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 21, 1465–1477 (2020).

Article  CAS  PubMed  Google Scholar 

Reck, M. et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 7, 387–401 (2019).

Article  CAS  PubMed  Google Scholar 

Choudhary, A., Davodeau, F., Moreau, A., Peyrat, M. A. & Jotereau, F. Selective lysis of autologous tumor cells by recurrent gamma delta tumor-infiltrating lymphocytes from renal carcinoma. J. Immunol. 154, 3932–3940 (1995).

Article  CAS  PubMed  Google Scholar 

Mami-Chouaib, F. et al. T cell target 1 (TCT.1): a novel target molecule for human non-major histocompatibility complex-restricted T lymphocytes. J. Exp. Med. 172, 1071–1082 (1990).

Article  CAS  PubMed  Google Scholar 

Kobayashi, H., Tanaka, Y., Yagi, J., Toma, H. & Uchiyama, T. Gamma/delta T cells provide innate immunity against renal cell carcinoma. Cancer Immunol. Immunother. 50, 115–124 (2001).

Article  CAS  PubMed  Google Scholar 

Viey, E. et al. Phosphostim-activated γδ T cells kill autologous metastatic renal cell carcinoma. J. Immunol. 174, 1338–1347 (2005).

Article  CAS  PubMed  Google Scholar 

Lang, J. M. et al. Pilot trial of interleukin-2 and zoledronic acid to augment γδ T cells as treatment for patients with refractory renal cell carcinoma. Cancer Immunol. Immunother. 60, 1447–1460 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willcox, C. R. et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13, 872–879 (2012).

Article  CAS  PubMed  Google Scholar 

Hayday, A. C. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).

Article  CAS  PubMed  Google Scholar 

Kabelitz, D., Serrano, R., Kouakanou, L., Peters, C. & Kalyan, S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell. Mol. Immunol. 17, 925–939 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cano, C. E. et al. BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells. Cell Rep. 36, 109359 (2021).

Article  CAS  PubMed  Google Scholar 

Payne, K. K. et al. BTN3A1 governs antitumor responses by coordinating αβ and γδ T cells. Science 369, 942–949 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paul, S. & Lal, G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer: gamma-delta T cells in cancer. Int. J. Cancer 139, 976–985 (2016).

Article  CAS  PubMed  Google Scholar 

Silva-Santos, B., Serre, K. & Norell, H. γδ T cells in cancer. Nat. Rev. Immunol. 15, 683–691 (2015).

Article  CAS  PubMed  Google Scholar 

Wu, P. et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40, 785–800 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fleming, C. et al. Microbiota-activated CD103+ DCs stemming from microbiota adaptation specifically drive γδT17 proliferation and activation. Microbiome 5, 46 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Peng, G. et al. Tumor-infiltrating γδ T cells suppress T and dendritic cell function via mechanisms controlled by a unique Toll-like receptor signaling pathway. Immunity 27, 334–348 (2007).

Article  CAS  PubMed  Google Scholar 

Peters, C., Oberg, H.-H., Kabelitz, D. & Wesch, D. Phenotype and regulation of immunosuppressive Vδ2-expressing γδ T cells. Cell. Mol. Life Sci. 71, 1943–1960 (2014).

Article  CAS  PubMed  Google Scholar 

Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T cells. Science 309, 264–268 (2005).

Article  CAS  PubMed  Google Scholar 

Moser, B. & Brandes, M. γδ T cells: an alternative type of professional APC. Trends Immunol. 27, 112–118 (2006).

Article  CAS  PubMed  Google Scholar 

Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, C. et al. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J. Immunol. 189, 5029–5036 (2012).

Article  CAS  PubMed  Google Scholar 

Dondero, A. et al. PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. OncoImmunology 5, e1064578 (2016).

Article  PubMed  Google Scholar 

Daley, D. et al. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation. Cell 166, 1485–1499.e15 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, G. et al. Tumor-infiltrating CD39+. γδ Tregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology 6, e1277305 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Castella, B. et al. Anergic bone marrow Vγ9Vδ2 T cells as early and long-lasting markers of PD-1-targetable microenvironment-induced immune suppression in human myeloma. Oncoimmunology 4, e1047580 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Li, X. et al. Tim-3 suppresses the killing effect of Vγ9Vδ2 T cells on colon cancer cells by reducing perforin and granzyme B expression. Exp. Cell. Res. 386, 111719 (2020).

Article  CAS  PubMed  Google Scholar 

Ness-Schwickerath, K. J., Jin, C. & Morita, C. T. Cytokine requirements for the differentiation and expansion of IL-17A– and IL-22–producing human Vγ2Vδ2 T cells. J. Immunol. 184, 7268–7280 (2010).

Article  CAS  PubMed  Google Scholar 

Dieli, F. et al. Characterization of lung γδ T cells following intranasal infection with Mycobacterium bovis bacillus Calmette–Guérin. J. Immunol. 170, 463–469 (2003).

Article  CAS  PubMed  Google Scholar 

Ryan, P. L. et al. Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc. Natl Acad. Sci. USA 113, 14378–14383 (2016).

Article  CAS 

留言 (0)

沒有登入
gif