Air Sampling and Analysis of Aeroallergens: Current and Future Approaches

Stetzenbach LD. Introduction to Aerobiology. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD, editors. Manual of Environmental Microbiology. 3rd ed. Washington, D.C.: American Society of Microbiology Press; 2007. p 923–38.

Chapter  Google Scholar 

Haskell RJ, Barss H. Fred Campbell Meier, 1893–1938. Phytopathology. 1939;29:293–302.

Google Scholar 

Lacey ME, West JS. The air spora: a manual for catching and identifying airborne biological particles. Dordrecht, The Netherlands: Springer; 2006.

Book  Google Scholar 

Evan AT, Flamant C, Gaetani M, Guichard F. The past, present and future of African dust. Nature. 2016;531(7595):493–5. https://doi.org/10.1038/nature17149.

Article  CAS  PubMed  Google Scholar 

Levetin E. Methods for aeroallergen sampling. Curr Allergy Asthma Rep. 2004;4(5):376–83.

Article  PubMed  Google Scholar 

Di-Giovanni F. A review of the sampling efficiency of rotating-arm impactors used in aerobiological studies. Grana. 1998;37(3):164–71.

Article  Google Scholar 

Blackley CH. Experimental researches on the causes and nature of Catarrhus aestivus (hay-fever or hay-asthma). London: Baillière, Tindall & Cox; 1873.

Google Scholar 

Burge HA. Monitoring for airborne allergens. Ann Allergy. 1992;69(1):9–18.

CAS  PubMed  Google Scholar 

Durham OC. Cooperative studies in ragweed pollen incidence: atmospheric data from twenty-two cities. J Allergy. 1929;1(1):12–21.

Article  Google Scholar 

Durham OC. The pollen content of the air in North America. J Allergy. 1935;6(2):128–49.

Article  Google Scholar 

Durham OC. The volumetric incidence of atmospheric allergens; a proposed standard method of gravity sampling, counting, and volumetric interpolation of results. J Allergy. 1946;17:79–86.

Article  CAS  PubMed  Google Scholar 

Mitman G. A history of pollen mapping and surveillance: the relations between natural history and clinical allergy. J Allergy Clin Immun. 2004;114:1230–5. https://doi.org/10.1016/j.jaci.2004.08.016.

Article  PubMed  Google Scholar 

Muilenberg ML. Sampling devices. Immunol Allergy Clin North Am. 2003;23(3):337–55.

Article  PubMed  Google Scholar 

Bainbridge A, Brent KJ. John Malcolm Hirst, D. S. C. 20 April 1921–30 December 1997. Biographical Memoirs of Fellows of the Royal Society. 1999;45: 221–238.

Buters JTM, Antunes C, Galveias A, Bergmann KC, Thibaudon M, Galán C, et al. Pollen and spore monitoring in the world. Clin Transl Allergy. 2018;8:9. https://doi.org/10.1186/s13601-018-0197-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levetin E, Pityn PJ, Ramon GD, Pityn E, Anderson J, Bielory L, et al. Aeroallergen monitoring by the National Allergy Bureau: a review of the past and a look into the future. J Allergy Clin Immunol Prac. 2023 (in press). https://doi.org/10.1016/j.jaip.2022.11.026.

Leighton PA, Perkins WA, Grinnell SW, Webster FX. The fluorescent particle atmospheric tracer. J Appl Meteorol Clim. 1965;4(3):334–48.

Article  Google Scholar 

Frenz DA. Comparing pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Ann Allergy Asthma Immunol. 1999;83(5):341–7.

Article  CAS  PubMed  Google Scholar 

Solomon WR, Burge HA, Boise JR, Becker M. Comparative particle recoveries by the retracting rotorod, rotoslide and Burkard spore trap sampling in a compact array. Int J Biometeor. 1980;24(2):107–16.

Article  Google Scholar 

May KR, Pomeroy NP, Hibbs S. Sampling techniques for large windborne particles. J Aerosol Sci. 1976;7(1):53–62.

Article  Google Scholar 

Shelton BG, Kirkland KH, Flanders WD, Morris GK. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microb. 2002;68(4):1743–53. https://doi.org/10.1128/AEM.68.4.1743-1753.2002.

Article  CAS  Google Scholar 

Nevalainen A, Täubel M, Hyvärinen A. Indoor fungi: companions and contaminants. Indoor Air. 2015;25:125–56. https://doi.org/10.1111/ina.12182.

Article  CAS  PubMed  Google Scholar 

Reboux G, Rocchi S, Laboissière A, Ammari H, Bochaton M, Gardin G, Rame JM, Millon L. Survey of 1012 moldy dwellings by culture fungal analysis: threshold proposal for asthmatic patient management. Indoor Air. 2019;29(1):5–16. https://doi.org/10.1111/ina.12516.

Article  PubMed  Google Scholar 

Peccia J, Hernandez M. Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: a review. Atmos Environ. 2006;40:3941–61. https://doi.org/10.1016/j.atmosenv.2006.02.029.

Article  CAS  Google Scholar 

Cox J, Mbareche H, Lindsley WG, Duchaine C. Field sampling of indoor bioaerosols, Aeros Sci Tech. 2020;54:572–584. https://doi.org/10.1080/02786826.2019.1688759.

Lindsley WG, Green BJ, Blachere FM, Martin SB, Law BF, Jensen PA, Schafer MP. Sampling and characterization of bioaerosols. In: Ashley K, O’Connor PF, editors. NIOSH Manual of Analytical Methods. 5th ed. Cincinnati, OH: National Institute for Occupational Safety and Health. 2017.

Saldanha R, Manno M, Saleh M, Ewaze JO, Scott JA. The influence of sampling duration on recovery of culturable fungi using the Andersen N6 and RCS bioaerosol samplers. Indoor Air. 2008;18(6):464–72. https://doi.org/10.1111/j.1600-0668.2008.00547.x.

Article  CAS  PubMed  Google Scholar 

• Mainelis G. Bioaerosol sampling: classical approaches, advances, and perspectives. Aerosol Sci Tech 2020;54(5):496–519. https://doi.org/10.1080/02786826.2019.1671950. In depth review of current bioaerosol sampling methods, especially for indoor environments.

Pumkaeo P, Iwahashi H. Bioaerosol sources, sampling methods, and major categories: A comprehensive overview. Rev Ag Sci. 2020;8:261–78. https://doi.org/10.7831/ras.8.0_261.

Article  Google Scholar 

Aizenberg V, Reponen T, Grinshpun SA, Willeke K. Performance of Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores. Am Ind Hyg Assoc J. 2000;61(6):855–64. https://doi.org/10.1080/15298660008984598.

Article  CAS  Google Scholar 

Pityn PJ, Anderson J. Air sampling of mold spores by slit impactors: yield comparison. J Env Sci Health, Part A. 2013;48:1485–90. https://doi.org/10.1080/10934529.2013.796817.

Article  CAS  Google Scholar 

Scott JA, Summerbell RC, Green BJ. Detection of indoor fungi bioaerosols. In: Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living 2011 (pp. 353–379). Wageningen Academic Publishers, Wageningen.

Environmental Protection Agency. Indoor air facts No. 4 (revised) sick building syndrome. Research and Development (MD-56). 1991. https://www.epa.gov/sites/default/files/2014-08/documents/sick_building_factsheet.

Prezant B, Weekes D, and Miller J (editors). Recognition, evaluation and control of indoor mold. Fairfax, VA. Am Ind Hygiene Assoc. 2008.

Leaderer BP, Belanger K, Triche E, Holford T, Gold DR, Kim Y, et al. Dust mite, cockroach, cat, and dog allergen concentrations in homes of asthmatic children in the northeastern United States: impact of socioeconomic factors and population density. Envir Health Perspect. 2002;110(4):419–25. https://doi.org/10.1289/ehp.02110419.

Article  Google Scholar 

Ahluwalia SK, Matsui EC. Indoor environmental interventions for furry pet allergens, pest allergens, and mold: looking to the future. J Allergy Clin Immunol Pract. 2018;6:9–19. https://doi.org/10.1016/j.jaip.2017.10.009.

Article  PubMed  PubMed Central  Google Scholar 

Kristono GA, Shorter C, Pierse N, Crane J, Siebers R. Endotoxin, cat, and house dust mite allergens in electrostatic cloths and bedroom dust. J Occup Environ Hyg. 2019;16(1):89–96. https://doi.org/10.1080/15459624.2018.1536827.

Article  PubMed  Google Scholar 

Green BJ, Lemons AR, Park Y, Cox-Ganser JM, Park JH. Assessment of fungal diversity in a water-damaged office building. J Occup Environ Hyg. 2017;14:285–93. https://doi.org/10.1080/15459624.2016.1252044.

Article  PubMed  PubMed Central  Google Scholar 

• Cochran SJ, Acosta L, Divjan A, Lemons AR, Rundle AG, Miller RL, Sobek E, Green BJ, Perzanowski MS, Dannemiller KC. Spring is associated with increased total and allergenic fungal concentrations in house dust from a pediatric asthma cohort in New York City. Build Environ. 2022;226:109711. https://doi.org/10.1016/j.buildenv.2022.109711. This study uses next generation sequencing and qPCR to determine seasonal exposure to fungi in New York City homes.

Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig RE, Berger U, Clot B, Brandao R. Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia. 2014;30(4):385–95. https://doi.org/10.1007/s10453-014-9335-5.

Article  Google Scholar 

Kapyla M, Penttinen A. An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana. 1981;20:131–41.

Article  Google Scholar 

Comtois P, Alcazar P, Néron D. Pollen counts statistics and its relevance to precision. Aerobiologia. 1999;15(1):19–28. https://doi.org/10.1023/A:1007501017470.

Article  Google Scholar 

Cariñanos P, Emberlin J, Galán C, Dominguez-Vilches E. Comparison of two pollen counting methods of slides from a Hirst type volumetric trap. Aerobiologia. 2000;16:339–46. https://doi.org/10.1023/A:1026577406912.

Article  Google Scholar 

McLoud JD, Levetin E. Magnifying: The truth behind fungal spore counts. J Allergy Clin Immunol. 2015;135(2):AB231. https://doi.org/10.1016/j.jaci.2014.12.1689

Sterling M, Rogers C, Levetin E. An evaluation of two methods used for microscopic analysis of airborne fungal spore concentrations from the Burkard Spore Trap. Aerobiologia. 1999;15:9–18. https://doi.org/10.1023/A:1007561201541.

Article  Google Scholar 

European Standard EN 16868:2019 Ambient air – Sampling and analysis of airborne pollen grains and fungal spores for networks related to allergy – Volumetric Hirst method. https://www.en-standard.eu/csn-en-16868

Green BJ, Tovey ER, Sercombe JK, Blachere FM, Beezhold DH, Schmechel D. Airborne fungal fragments and allergenicity. Med Mycol. 2006;44:S245–55. https://doi.org/10.1080/13693780600776308.

Article  CAS  PubMed  Google Scholar 

J Buters M Prank M Sofiev G Pusch R Albertini I Annesi-Maesano et al. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season J Allergy Clin Immunol 2015;136(1):8795e6 https://doi.org/10.1016/j.jaci.2015.01.049

De Linares C, Alcázar P, Valle AM, de la Guardia CD, Galán C. Parietaria major allergens vs pollen in the air we breathe. Environ Res. 2019;176:108–514. https://doi.org/10.1016/j.envres.2019.05.045

De Linares C, Navarro D, Puigdemunt R, Belmonte J. Airborne Alt a 1 dynamic and its relationship with the airborne dynamics of Alternaria conidia and Pleosporales spores. J Fungi. 2022; 8(2):125jof8020125.

Gasana J, Ibrahimou B, Albatineh AN, Al-Zoughool M, Zein D. Exposures in the indoor environment and prevalence of allergic conditions in the United States of America. Int J Environ Res Public Health. 2021;18(9):4945. https://doi.org/10.3390/ijerph18094945.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grewling Ł, Bogawski P, Szymańska A, Nowak M, Kostecki Ł, Smith M. Particle size distribution of the major Alternaria alternata allergen, Alt a 1, derived from airborne spores and subspore fragments. Fungal Biol. 2020;124:219–27. https://doi.org/10.1016/j.funbio.2020.02.005.

Article  CAS  PubMed  Google Scholar 

Kristono GA, Shorter C, Pierse N, Crane J, Siebers R. Endotoxin, cat, and house dust mite allergens in electrostatic cloths and bedroom dust. J Occup Environ Hyg. 2019;16:89–96. https://doi.org/10.1080/15459624.2018.1536827.

Article  PubMed 

留言 (0)

沒有登入
gif