Improved infectious burn wound healing by applying lyophilized particles containing probiotics and prebiotics

Lactiplantibacillus plantarum cells were encapsulated in a mixture of cationic and anionic polymers, with the final composition stabilized through freeze-drying. A D-optimal design was used to examine the effects of different polymer concentrations as well as adding prebiotics on the probiotic viability and swelling behavior of the formulations. Scanning electron micrographs revealed stacked particles capable of rapidly absorbing significant amounts of water. These images corresponded to initial swelling percentages of around 2000% for the optimal formulation. The optimized formula had a viability percentage of more than 82%, with the stability studies suggesting that the powders should be stored at refrigerated temperatures. The physical characteristics of the optimized formula were examined to ensure compatibility with its application. According to antimicrobial evaluations, the difference in pathogen inhibition between formulated and fresh probiotics was less than a logarithm. The final formula was tested in vivo and showed improved wound healing indicators. The optimized formula resulted in a higher rate of wound closure and infection clearance. Furthermore, the molecular studies for oxidative stress indicated that the formula could modify wound inflammatory responses. In histological investigations, the probiotic-loaded particles functioned exactly as efficaciously as silver sulfadiazine ointment did.

留言 (0)

沒有登入
gif