Extracellular vesicles from hyperammonemic rats induce neuroinflammation in hippocampus and impair cognition in control rats

Felipo V, Urios A, Montesinos E, Molina I, Garcia-Torres ML, Civera M et al (2012) Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis 27(1):51–58. https://doi.org/10.1007/s11011-011-9269-3

Article  CAS  PubMed  Google Scholar 

Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14(12):851–858. https://doi.org/10.1038/nrn3587

Article  CAS  PubMed  Google Scholar 

Shawcross DL, Davies NA, Williams R, Jalan R (2004) Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol 40(2):247–254. https://doi.org/10.1016/j.jhep.2003.10.016

Article  CAS  PubMed  Google Scholar 

Cabrera-Pastor A, Llansola M, Montoliu C, Malaguarnera M, Balzano T, Taoro-Gonzalez L et al (2019) Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: Underlying mechanisms and therapeutic implications. Acta Physiol (Oxf) 226(2):e13270. https://doi.org/10.1111/apha.13270

Article  CAS  PubMed  Google Scholar 

Balzano T, Dadsetan S, Forteza J, Cabrera-Pastor A, Taoro-Gonzalez L, Malaguarnera M et al (2020) Chronic hyperammonemia induces peripheral inflammation that leads to cognitive impairment in rats: reversed by anti-TNF-α treatment. J Hepatol 73(3):582–592. https://doi.org/10.1016/j.jhep.2019.01.008

Article  CAS  PubMed  Google Scholar 

Hernández-Rabaza V, Cabrera-Pastor A, Taoro-González L, Malaguarnera M, Agustí A, Llansola M et al (2016) Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane. J Neuroinflammation 16(13):41. https://doi.org/10.1186/s12974-016-0505-y

Article  CAS  Google Scholar 

Taoro-Gonzalez L, Arenas YM, Cabrera-Pastor A, Felipo V (2018) Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms. J Neuroinflammation 15(1):36. https://doi.org/10.1186/s12974-018-1082-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taoro-González L, Cabrera-Pastor A, Sancho-Alonso M, Arenas YM, Meseguer-Estornell F, Balzano T et al (2019) Differential role of interleukin-1β in neuroinflammation-induced impairment of spatial and nonspatial memory in hyperammonemic rats. FASEB J 33(9):9913–9928. https://doi.org/10.1096/fj.201900230RR

Article  PubMed  Google Scholar 

Montoliu C, Llansola M, Felipo V (2015) Neuroinflammation and neurological alterations in chronic liver diseases. Neuroimmunol Neuroinflammation 2:138–144. https://doi.org/10.4103/2347-8659.160845

Article  CAS  Google Scholar 

Le Page A, Dupuis G, Frost EH, Larbi A, Pawelec G, Witkowski JM et al (2018) Role of the peripheral innate immune system in the development of Alzheimer’s disease. Exp Gerontol 1(107):59–66. https://doi.org/10.1016/j.exger.2017.12.019

Article  CAS  Google Scholar 

Lyon MS, Wosiski-Kuhn M, Gillespie R, Caress J, Milligan C (2019) Inflammation, Immunity, and amyotrophic lateral sclerosis: I. Etiology and pathology. Muscle Nerve 59(1):10–22. https://doi.org/10.1002/mus.26289

Article  PubMed  Google Scholar 

Joshi N, Singh S (2018) Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 96(3):379–390. https://doi.org/10.1002/jnr.24185

Article  CAS  PubMed  Google Scholar 

Murta V, Ferrari C (2016) Peripheral inflammation and demyelinating diseases. Adv Exp Med Biol 949:263–285. https://doi.org/10.1007/978-3-319-40764-7_13

Article  CAS  PubMed  Google Scholar 

Romero-Gómez M, Ramos-Guerrero R, Grande L, de Terán LC, Corpas R, Camacho I et al (2004) Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J Hepatol 41(1):49–54. https://doi.org/10.1016/j.jhep.2004.03.021

Article  CAS  PubMed  Google Scholar 

Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut–brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209

PubMed  PubMed Central  Google Scholar 

Macia L, Nanan R, Hosseini-Beheshti E, Grau GE (2019) Host- and microbiota-derived extracellular vesicles, immune function, and disease development. Int J Mol Sci 21(1):107. https://doi.org/10.3390/ijms21010107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bajaj JS (2014) The role of microbiota in hepatic encephalopathy. Gut Microbes 5(3):397–403. https://doi.org/10.4161/gmic.28684

Article  PubMed  PubMed Central  Google Scholar 

Chen Z, Ruan J, Li D, Wang M, Han Z, Qiu W et al (2021) The role of intestinal bacteria and gut–brain axis in hepatic encephalopathy. Front Cell Infect Microbiol 10:595759. https://doi.org/10.3389/fcimb.2020.595759

Article  PubMed  PubMed Central  Google Scholar 

Bajaj JS (2016) Review article: potential mechanisms of action of rifaximin in the management of hepatic encephalopathy and other complications of cirrhosis. Aliment Pharmacol Ther 43(Suppl 1):11–26. https://doi.org/10.1111/apt.13435

Article  CAS  PubMed  Google Scholar 

Mangas-Losada A, García-García R, Leone P, Ballester MP, Cabrera-Pastor A, Urios A et al (2019) Selective improvement by rifaximin of changes in the immunophenotype in patients who improve minimal hepatic encephalopathy. J Transl Med 17(1):293. https://doi.org/10.1186/s12967-019-2046-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaji K, Saikawa S, Takaya H, Fujinaga Y, Furukawa M, Kitagawa K et al (2020) Rifaximin alleviates endotoxemia with decreased serum levels of soluble CD163 and mannose receptor and partial modification of gut microbiota in cirrhotic patients. Antibiotics (Basel) 9(4):145. https://doi.org/10.3390/antibiotics9040145

Article  CAS  PubMed  Google Scholar 

Mangas-Losada A, García-García R, Urios A, Escudero-García D, Tosca J, Giner-Durán R et al (2017) Minimal hepatic encephalopathy is associated with expansion and activation of CD4+CD28−, Th22 and Tfh and B lymphocytes. Sci Rep 7(1):6683. https://doi.org/10.1038/s41598-017-05938-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A et al (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278(44):43807–43817. https://doi.org/10.1074/jbc.M305841200(Erratum in: J Biol Chem. 2003 Dec 19;278(51):51974)

Article  CAS  PubMed  Google Scholar 

Vanderlocht J, Hellings N, Hendriks JJ, Stinissen P (2007) The ambivalent nature of T-cell infiltration in the central nervous system of patients with multiple sclerosis. Crit Rev Immunol 27(1):1–13. https://doi.org/10.1615/critrevimmunol.v27.i1.10

Article  CAS  PubMed  Google Scholar 

Nguyen K, D’Mello C, Le T, Urbanski S, Swain MG (2012) Regulatory T cells suppress sickness behaviour development without altering liver injury in cholestatic mice. J Hepatol 56(3):626–631. https://doi.org/10.1016/j.jhep.2011.09.014

Article  CAS  PubMed  Google Scholar 

Han C, Xiong N, Guo X, Huang J, Ma K, Liu L et al (2019) Exosomes from patients with Parkinson’s disease are pathological in mice. J Mol Med (Berl) 97(9):1329–1344. https://doi.org/10.1007/s00109-019-01810-z

Article  CAS  PubMed  Google Scholar 

Sproviero D, La Salvia S, Giannini M, Crippa V, Gagliardi S, Bernuzzi S et al (2018) Pathological proteins are transported by extracellular vesicles of sporadic amyotrophic lateral sclerosis patients. Front Neurosci 12:487. https://doi.org/10.3389/fnins.2018.00487

Article  PubMed  PubMed Central  Google Scholar 

Tsilioni I, Theoharides TC (2018) Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1β. J Neuroinflammation 15(1):239. https://doi.org/10.1186/s12974-018-1275-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Izquierdo-Altarejos P, Cabrera-Pastor A, Gonzalez-King H, Montoliu C, Felipo V (2020) Extracellular vesicles from hyperammonemic rats induce neuroinflammation and motor incoordination in control rats. Cells 9(3):572. https://doi.org/10.3390/cells9030572

Article  CAS  PubMed  PubMed Central  Google Scholar 

Izquierdo-Altarejos P, Martínez-García M, Felipo V (2022) Extracellular vesicles from hyperammonemic rats induce neuroinflammation in cerebellum of normal rats: role of increased TNFα content. Front Immunol 13:921947. https://doi.org/10.3389/fimmu.2022.921947

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dadsetan S, Balzano T, Forteza J, Cabrera-Pastor A, Taoro-Gonzalez L, Hernandez-Rabaza V et al (2016) Reducing peripheral inflammation with infliximab reduces neuroinflammation and improves cognition in rats with hepatic encephalopathy. Front Mol Neurosci 2(9):106. https://doi.org/10.3389/fnmol.2016.00106

Article  CAS  Google Scholar 

Hayden MS, Ghosh S (2014) Regulation of NF-κB by TNF family cytokines. Semin Immunol 26(3):253–266. https://doi.org/10.1016/j.smim.2014.05.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan X, Liu Z, Chen Y (2009) Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai) 41(4):263–272. https://doi.org/10.1093/abbs/gmp018

Article  CAS  PubMed  Google Scholar 

Ridder K, Keller S, Dams M, Rupp AK, Schlaudraff J, Del Turco D et al (2014) Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol 12(6):e1001874. https://doi.org/10.1371/journal.pbio.1001874

留言 (0)

沒有登入
gif